scholarly journals Structure-based virtual screening for new lead compounds targeted Plasmodium α-tubulin

2021 ◽  
Vol 28 ◽  
pp. 135-139
Author(s):  
O. V. Rayevsky ◽  
O. M. Demchyk ◽  
P. A. Karpov ◽  
S. P. Ozheredov ◽  
S. I. Spivak ◽  
...  

Aim. Search for new dinitroaniline and phosphorothioamide compounds, capable of selective binding with Plasmodium α-tubulin, affecting its mitotic apparatus. Methods. Structural biology methods of computational prediction of protein-ligand interaction: molecular docking, molecular dynamics and pharmacophore analysis. Selection of compounds based on pharmacophore characteristics and virtual screening results. Results. The protocol and required structural conditions for target (α-tubulin of P. falciparum) preparation and correct modeling of the ligand-protein interaction (docking and virtual screening) were developed. The generalized pharmacophore model of ligand-protein interaction and key functional groups of ligands responsible for specific binding were identified. Conclusions. Based on results of virtual screening, 22 commercial compounds were selected. Identified compounds proposed as potential inhibitors of Plasmodium mitotic machinery and the base of new antimalarial drugs. Keywords: malaria, Plasmodium, intermolecular interaction, dinitroaniline derived, phosphorothioamidate derived.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zeynab Fakhar ◽  
Shama Khan ◽  
Suliman Y. AlOmar ◽  
Afrah Alkhuriji ◽  
Aijaz Ahmad

AbstractA new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening workflow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the selected lead compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered lead compounds. Binding energies revealed that compound ABBV-744 binds to the Mpro with strong affinity (ΔGbind −45.43 kcal/mol), and the complex is more stable in comparison with other protein–ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.


2020 ◽  
Author(s):  
Zeynab Fakhar ◽  
Shama Khan ◽  
Aijaz Ahmad

Abstract A new pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and become pandemic with thousands new deaths and infected cases globally. To address coronavirus disease (COVID-19), currently no effective drug or vaccine is available. This necessity motivated us to explore potential lead compounds by considering drug repurposing approach targeting main protease (Mpro) enzyme of SARS-CoV-2. This enzyme considered to be an attractive drug target as it contributes significantly in mediating viral replication and transcription. Herein, comprehensive computational investigations were performed to identify potential inhibitors of SARS-CoV-2 Mpro enzyme. The structure-based pharmacophore modeling was developed based on the co-crystallized structure of the enzyme with its biological active inhibitor. The generated hypotheses were applied for virtual screening based PhaseScore. Docking based virtual screening work-flow was used to generate hit compounds using HTVS, SP and XP based Glide GScore. The pharmacological and physicochemical properties of the best hit compounds were characterized using ADMET. Molecular dynamics simulations were performed to explore the binding affinities of the considered compounds. Binding studies revealed that compound ABBV-744 binds to the Mpro with strong affinity (Gbind -45.43 kcal/mol), and the complex is more stable in comparison with other protein-ligand complexes. Our study classified three best compounds which could be considered as promising inhibitors against main protease SARS-CoV-2 virus.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Gabriella Patricia Adisurja ◽  
Arli Aditya Parkesit

: As per the1st of September 2020, the COVID-19 pandemic has reached an unprecedented level of more than 25 million cases with more than 850,000 deaths. Moreover, all the drug candidates are still undergoing testing in clinical trial. In this regard, a breakthrough in drug design is necessary. One strategy to devise lead compounds is leveraging natural products as a lead source. Several companies and research institutes are currently developing anti-SARS-CoV-2 leads from natural products. Flavanoids are well known as a class of antiviral compounds library. The objective of this research is to employ virtual screening methods for obtaining the best lead compounds from the library of flavonoid compounds. This research employed virtual screening methods that comprised of downloading the protein and lead compound structures, QSAR analysis prediction, iterations of molecular docking simulation, and ADME-TOX simulation for toxicity prediction. The QSAR analysis found that the tested compounds have broad-spectrum antiviral activity, and some of them exhibit specific binding to the 3C-like Protease of the Coronavirus. Moreover, juglanin was found as the compound with the most fit binding with the Protease enzyme of SARS-CoV-2. Although most of the tested compounds are deemed toxic by the ADME-Tox test, further research should be conducted to comprehend the most feasible strategy to deliver the drug to the infected lung cells. The juglanin compound is selected as the most fit candidate as the SARS-CoV-2 lead compound in the tested flavonoid samples. However, further research should be conducted to observe the lead delivery method to the cell.


2021 ◽  
Author(s):  
Satyajit Beura ◽  
Prabhakar Chetti

To design a new therapeutic agent for Hematopoietic Prostaglandin D2 synthase (hPGDS), a set of 60 molecules with different molecular scaffolds were (range of pIC50 values are from 8.301 to 3.932) considered to create a pharmacophore model. Further, identification of potential hPGDS inhibitors were carried out by using virtual screening with different databases (from 15,74,182 molecules). The Molecular screening was performed using different sequential methods right from Pharmacophore based virtual screening, molecular docking, MM-GBSAstudies, ADME property analysis and molecular dynamics simulations using Maestro11.9 software. Based on the best pharmacophore model (ADRR_1), the resultant set of 18,492 molecules were screened. The preliminarily screened molecules were subjected to molecular docking (PDB_ID: 2CVD) methods. A set of 27 molecules was screened from the resultant molecular docking outcomes (360 molecules) based on binding free energy (ΔGbind) and Lipinskis rule of five. Out of 27 molecules, 4 were selected visual data analysis and further subjected to molecular dynamics (MD) simulation study. Outcomes of the present study conclude with three new proposed molecules (SP1, SP2 and SP10) which show a good range of interaction with human hPGDS enzyme in comparison to the marketed compounds i.e., HQL-79, TFC-007, HPGDS inhibitor I and TAS-204.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 266
Author(s):  
Baki Vijaya Bhaskar ◽  
Tirumalasetty Muni Chandra Babu ◽  
Aluru Rammohan ◽  
Gui Yu Zheng ◽  
Grigory V. Zyryanov ◽  
...  

Multidrug resistance in Pseudomonas aeruginosa is a noticeable and ongoing major obstacle for inhibitor design. In P. aeruginosa, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) acetyltransferase (PaLpxA) is an essential enzyme of lipid A biosynthesis and an attractive drug target. PaLpxA is a homotrimer, and the binding pocket for its substrate, UDP-GlcNAc, is positioned between the monomer A–monomer B interface. The uracil moiety binds at one monomer A, the GlcNAc moiety binds at another monomer B, and a diphosphate form bonds with both monomers. The catalytic residues are conserved and display a similar catalytic mechanism across orthologs, but some distinctions exist between pocket sizes, residue differences, substrate positioning and specificity. The analysis of diversified pockets, volumes, and ligand positions was determined between orthologues that could aid in selective inhibitor development. Thenceforth, a complex-based pharmacophore model was generated and subjected to virtual screening to identify compounds with similar pharmacophoric properties. Docking and general Born-volume integral (GBVI) studies demonstrated 10 best lead compounds with selective inhibition properties with essential residues in the pocket. For biological access, these scaffolds complied with the Lipinski rule, no toxicity and drug likeness properties, and were considered as lead compounds. Hence, these scaffolds could be helpful for the development of potential selective PaLpxA inhibitors.


2020 ◽  
Vol 8 ◽  
Author(s):  
Renata Abel ◽  
María Paredes Ramos ◽  
Qiaofeng Chen ◽  
Horacio Pérez-Sánchez ◽  
Flaminia Coluzzi ◽  
...  

The rapidly developing pandemic, known as coronavirus disease 2019 (COVID-19) and caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently spread across 213 countries and territories. This pandemic is a dire public health threat—particularly for those suffering from hypertension, cardiovascular diseases, pulmonary diseases, or diabetes; without approved treatments, it is likely to persist or recur. To facilitate the rapid discovery of inhibitors with clinical potential, we have applied ligand- and structure-based computational approaches to develop a virtual screening methodology that allows us to predict potential inhibitors. In this work, virtual screening was performed against two natural products databases, Super Natural II and Traditional Chinese Medicine. Additionally, we have used an integrated drug repurposing approach to computationally identify potential inhibitors of the main protease of SARS-CoV-2 in databases of drugs (both approved and withdrawn). Roughly 360,000 compounds were screened using various molecular fingerprints and molecular docking methods; of these, 80 docked compounds were evaluated in detail, and the 12 best hits from four datasets were further inspected via molecular dynamics simulations. Finally, toxicity and cytochrome inhibition profiles were computationally analyzed for the selected candidate compounds.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lirui Lin ◽  
Kai Lin ◽  
Xiaodong Wu ◽  
Jia Liu ◽  
Yinwei Cheng ◽  
...  

Marine nature products are unique compounds that are produced by the marine environment including plants, animals, and microorganisms. The wide diversity of marine natural products have great potential and are versatile in terms of drug discovery. In this paper, we use state-of-the-art computational methods to discover inhibitors from marine natural products to block the function of Fascin, an overexpressed protein in various cancers. First, virtual screening (pharmacophore model and molecular docking) was carried out based on a marine natural products database (12015 molecules) and provided eighteen molecules that could potentially inhibit the function of Fascin. Next, molecular mechanics generalized Born surface area (MM/GBSA) calculations were conducted and indicated that four molecules have higher binding affinities than the inhibitor NP-G2-029, which was validated experimentally. ADMET analyses of pharmacokinetics demonstrated that one of the four molecules does not match the criterion. Finally, ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations were carried out to validate the three inhibitors binding to Fascin stably. In addition, dynamic interactions between protein and ligands were analyzed systematically. Our study will accelerate the development of the cancer drugs targeting Fascin.


2021 ◽  
Vol 15 (1) ◽  
pp. 8
Author(s):  
Luis Córdova-Bahena ◽  
Axel A. Sánchez-Álvarez ◽  
Angel J. Ruiz-Moreno ◽  
Marco A. Velasco-Velázquez

CK1ε is a key regulator of WNT/β-catenin and other pathways that are linked to tumor progression; thus, CK1ε is considered a target for the development of antineoplastic therapies. In this study, we performed a virtual screening to search for potential CK1ε inhibitors. First, we characterized the dynamic noncovalent interactions profiles for a set of reported CK1ε inhibitors to generate a pharmacophore model, which was used to identify new potential inhibitors among FDA-approved drugs. We found that etravirine and abacavir, two drugs that are approved for HIV infections, can be repurposed as CK1ε inhibitors. The interaction of these drugs with CK1ε was further examined by molecular docking and molecular dynamics. Etravirine and abacavir formed stable complexes with the target, emulating the binding behavior of known inhibitors. However, only etravirine showed high theoretical binding affinity to CK1ε. Our findings provide a new pharmacophore for targeting CK1ε and implicate etravirine as a CK1ε inhibitor and antineoplastic agent.


Sign in / Sign up

Export Citation Format

Share Document