Analytical Approaches To Determine The Specific Biomass Growth Rate In Brewing

Author(s):  
Georgi Kostov ◽  
Rositsa Denkova-Kostova ◽  
Vesela Shopska ◽  
Bogdan Goranov
Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 68
Author(s):  
Elina Didrihsone ◽  
Konstantins Dubencovs ◽  
Mara Grube ◽  
Karlis Shvirksts ◽  
Anastasija Suleiko ◽  
...  

Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h−1, while the biomass yield from substrate reached 0.601 g·g−1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h−1) and yield from the substrate (0.234 g·g−1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.


2021 ◽  
Author(s):  
Weining Lin

Clostridium phytofermentans, a newly isolated mesophilic anaerobic bacterium from forest soil, has received considerable attention for its potential application in producing ethanol directly from cellulose. This microorganism produces ethanol, acetate, CO₂ and H₂ as major metabolites from cellulose. Potential applications of this research include the transformation of waste materials into valuable products, such as fuels and organic acids. As an initial part of a multi-staged project, this study is to focus on the characerization of this microorganism growth and to verify the bacterium kinetics, including biomass growth, substrate utilization, and gas production. A series of batch fermentation experiments using cellulose substrate (GS-2C) was performed under the incubation temperature of 37°C. To investigate the effects of pH and substrate concentration (S₀) on growth, 12 trial experiments were conducted with various controlled pH values (7.0 to 8.5) and with various initial cellulose concentration settings (0.1 to 6.0 g/L). Our experimental results showed that the optimal growth condition for C. phytofermentans in batch culture was at pH = 8.4 amd S₀ = 6.0 g/L. Under such condition, the maximum growth rate of 0.37h⁻¹ was observed. Comparing results with other celluloytic clostridium studies, relatively high biomass growth rate using C. phytofermentans is confirmed by our experiments. Mathematical models, using a combination modelling approach with the logistic equation. Monod model, and Luedeking-Piret model, were developed for biomass growth, substrate degradation, and biogas production, respectively, base on our experiment results. This study demonstrated the determination of the four parameters (µmax, Ks, Y, and Smin), which can describe satisfactorily growth or degradation phenomena, using the proposed integration modelling approach. The experiments conducted under wide range conditions, such as changing pH and S₀, not only provide insight into growth kinetics but also provide an opportunity to evaluate the performance of the mathematical models and understand their limitations. This leads to look for improvement or modification to the models. It is foreseen that the findings in this study will enhance the overall understanding of the kinetics of growth and substrate utilization and product formation of this bacterium, and provide important information on the design of the bench-scale anaerobic bioreactor for future studies.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 784
Author(s):  
Senthilkumar Palaniappan ◽  
Murugappan Alagappan

The low optimum level of vermi pile depth (10 cm-15 cm) warrants encroachment of large land area and consume more time in the vermicomposting process.  In engineered vermicomposting, the acceleration of digestion of high volume of waste was done by eliminating the pre-composting and introducing pre-processing the waste.  This process involves chopping, pulverizing, stocking, and drying the waste followed by injecting the engineered microorganisms (EM) at various depths in vermi bin during the vermicomposting process. Pre-processing and injection of EM enabled to increase the substrate depth by two-to-three-fold (30 cm).  Experimentation was conducted in five vermi bins with same quantity of worms (100 gms of E. fetida in each bin), with different stock loads of EM  (0.3ml, 0.4ml, 0.5ml, 0.6ml and 0.7ml) named as Bin 1, Bin 2, Bin 3, Bin 4 and Bin 5 respectively.  In parallel, a control (Bin C1) and conventional (Bin C2) vermi bin were also set up to compare the differences observed.  The outcome of the study clearly showed that the bin loaded with 0.7ml EM (Bin 5) stock achieved high volume reduction (70%). Moreover, the trail unit loaded with 0.5ml of EM stock (Bin 3) exhibited high biomass growth rate than its counter trail units.   


2018 ◽  
Vol 58 (2) ◽  
pp. 92
Author(s):  
Roman Fekete ◽  
Terézia Žáková ◽  
Ľudmila Gabrišová ◽  
Peter Kotora ◽  
Peter Peciar ◽  
...  

At the present time, a great attention is being paid to the use of algae. Algae can adapt to different conditions and can produce substances corresponding to responsible environments. The main problem in their cultivation is the design of a suitable photoreactor. It should create the optimal conditions for their growth, which is mainly dependent on the contact of the algae with the light. The intensity of the light depends on the hydrodynamic conditions in the photoreactor and on its geometry. This paper deals with the study of kinetics of growth and gross biomass yield of biomass in laboratory photobioreactors, respecting their geometrical similarity as a basis for a possible scale-up. An optimal ratio between biomass growth rate and its gross biomass yield as a function of the photoreactor geometry is searched. <em>Chlamydomonas reinhardtii</em> were used as the model organism.


2021 ◽  
Vol 9 (8) ◽  
pp. 1598
Author(s):  
Aigars Lavrinovičs ◽  
Fredrika Murby ◽  
Elīna Zīverte ◽  
Linda Mežule ◽  
Tālis Juhna

Four microalgal species, Chlorella vulgaris, Botryococcus braunii, Ankistrodesmus falcatus, and Tetradesmus obliquus were studied for enhanced phosphorus removal from municipal wastewater after their exposure to phosphorus starvation. Microalgae were exposed to phosphorus starvation conditions for three and five days and then used in a batch experiment to purify an effluent from a small WWTP. After 3-day P-starvation, C. vulgaris biomass growth rate increased by 50% and its PO4 removal rate reached >99% within 7 days. B. braunii maintained good biomass growth rate and nutrient removal regardless of the P-starvation. All species showed 2–5 times higher alkaline phosphatase activity increase for P-starved biomass than at the reference conditions, responding to the decline of PO4 concentration in wastewater and biomass poly-P content. The overall efficiency of biomass P-starvation on enhanced phosphorus uptake was found to be dependent on the species, N/P molar ratio in the wastewater, as well as the biomass P content.


2017 ◽  
Vol 16 (1) ◽  
pp. 15
Author(s):  
Muhammad Fakhri ◽  
Nasrullah Bai Arifin ◽  
Anik Martina Hariati ◽  
Ating Yuniarti

<p class="Pa3"><strong>ABSTRACT </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. has been identified as sources of live feed and pigment in aquaculture. To increase the production, the optimal environmental conditions for microalgae are required. Light intensity is one of the important factors that significantly affects the biomass and pigment of microalgae. The study aimed to determine the effect of light intensity (1,500; 3,000; and 4,500 lux) on growth, biomass production, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17. The results showed that different light intensities significantly affected the growth, biomass, chlorophyll-a and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. Increasing light intensity resulted in the increase of the growth rate, biomass, chlorophyll-a, and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. The cell achieved the highest specific growth rate of 1.729 %/day and the cell concentration of 43.333×106 cell/mL at a light intensity of 4,500 lux. The highest chlorophyll-a and carotenoid concentrations of algae were obtained at 4,500 lux (8.304 μg/mL and 3.892 μg/mL, respectively). This study suggested that increasing light intensity led to the increase in the growth, biomass, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p class="Pa5">Keywords: carotenoid, chlorophyll, biomass, growth rate, light intensity</p><p> </p><p> </p><p class="Pa3"><strong>ABSTRAK </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. diketahui sebagai sumber pakan alami dan pigmen pada budidaya perikanan. Budidaya pada kondisi lingkungan yang optimal diperlukan untuk meningkatkan produksi mikroalga. Intensitas cahaya merupakan salah satu faktor esensial yang secara signifikan mempengaruhi biomassa dan pigmen mikroalga. Tujuan penelitian ini adalah untuk menentukan pengaruh intensitas cahaya yang berbeda (1.500, 3.000, and 4.500 lux) terhadap pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Hasil menunjukkan bahwa intensitas cahaya yang berbeda berpengaruh secara signifikan terhadap pertumbuhan, biomassa dan klorofil-a dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Semakin tinggi intensitas cahaya maka laju pertumbuhan, biomassa, kandungan klorofil-a dan total karotenoid <em>Nannochloropsis </em>sp. strain BJ17 semakin tinggi. Laju pertumbuhan spesifik tertinggi 1,729%/hari dan konsentrasi sel maksimum tertinggi 43,333×106 sel/mL dihasilkan pada intensitas cahaya 4.500 lux. Konsentrasi klorofil-a (8,304 μg/mL) dan karotenoid (3,892 μg/mL) tertinggi juga diperoleh pada intensitas cahaya 4.500 lux. Studi ini menunjukkan bahwa peningkatan intensitas cahaya berperan dalam meningkatkan pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p>Kata kunci: karotenoid, klorofil, biomassa, pertumbuhan, intensitas cahaya</p>


Sign in / Sign up

Export Citation Format

Share Document