scholarly journals Developing effective siRNAs to reduce the expression of key viral genes of COVID-19

2021 ◽  
Vol 17 (6) ◽  
pp. 1521-1529
Author(s):  
Renfei Wu ◽  
Kathy Qian Luo
Keyword(s):  

2019 ◽  
Vol 24 (39) ◽  
pp. 4659-4667 ◽  
Author(s):  
Mona Fani ◽  
Milad Zandi ◽  
Majid Rezayi ◽  
Nastaran Khodadad ◽  
Hadis Langari ◽  
...  

MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.



2010 ◽  
pp. 204-230 ◽  
Author(s):  
Edward S. Jr. Mocarski
Keyword(s):  






Zygote ◽  
2014 ◽  
Vol 23 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Yan Yun ◽  
Peng An ◽  
Jing Ning ◽  
Gui-Ming Zhao ◽  
Wen-Lin Yang ◽  
...  

SummaryOocyte-specific linker histone, H1foo, is localized on the oocyte chromosomes during the process of meiotic maturation, and is essential for mouse oocyte maturation. Bovine H1foo has been identified, and its expression profile throughout oocyte maturation and early embryo development has been established. However, it has not been confirmed if H1foo is indispensable during bovine oocyte maturation. Effective siRNAs against H1foo were screened in HeLa cells, and then siRNA was microinjected into bovine oocytes to down-regulate H1foo expression. H1foo overexpression was achieved via mRNA injection. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that H1foo was up-regulated by 200% and down-regulated by 70%. Based on the first polar body extrusion (PB1E) rate, H1foo overexpression apparently promoted meiotic progression. The knockdown of H1foo significantly impaired bovine oocyte maturation compared with H1foo overexpression and control groups (H1foo overexpression = 88.7%, H1foo siRNA = 41.2%, control = 71.2%; P < 0.05). This decrease can be rescued by co-injection of a modified H1foo mRNA that has escaped from the siRNA target. However, the H1e (somatic linker histone) overexpression had no effect on PB1E rate when compared with the control group. Therefore we concluded that H1foo is essential for bovine oocyte maturation and its overexpression stimulates the process.



2021 ◽  
Author(s):  
Tai L Ng ◽  
Erika J Olson ◽  
Tae Yeon Yoo ◽  
H. Sloane Weiss ◽  
Yukiye Koide ◽  
...  

Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single virus/gene basis. Here, we present a medium-throughput high-content cell-based assay to reveal the immunosuppressive effects of viral proteins. To test the predictive power of our approach, we developed a library of 800 genes encoding known, predicted, and uncharacterized human viral genes. We find that previously known immune suppressors from numerous viral families such as Picornaviridae and Flaviviridae recorded positive responses. These include a number of viral proteases for which we further confirmed that innate immune suppression depends on protease activity. A class of predicted inhibitors encoded by Rhabdoviridae viruses was demonstrated to block nuclear transport, and several previously uncharacterized proteins from uncultivated viruses were shown to inhibit nuclear transport of the transcription factors NF-kB and IRF3. We propose that this pathway-based assay, together with early sequencing, gene synthesis, and viral infection studies, could partly serve as the basis for rapid in vitro characterization of novel viral proteins.



1994 ◽  
Vol 14 (5) ◽  
pp. 3041-3052
Author(s):  
E K Flemington ◽  
J P Lytle ◽  
C Cayrol ◽  
A M Borras ◽  
S H Speck

The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.



2021 ◽  
Author(s):  
Gábor Torma ◽  
Dóra Tombácz ◽  
Norbert Moldován ◽  
Ádám Fülöp ◽  
István Prazsák ◽  
...  

Abstract In this study, we used two long-read sequencing (LRS) techniques, Sequel from the Pacific Biosciences and MinION from Oxford Nanopore Technologies, for the transcriptional characterization of a prototype baculovirus, Autographacalifornica multiple nucleopolyhedrovirus. LRS is able to read full-length RNA molecules, and thereby to distinguish between transcript isoforms, mono- and polycistronic RNAs, and overlapping transcripts. Altogether, we detected 875 transcripts, of which 759 are novel and 116 have been annotated previously. These RNA molecules include 41 novel putative protein coding transcript (each containing 5’-truncated in-frame ORFs), 14 monocistronic transcripts, 99 multicistronic RNAs, 101 non-coding RNA, and 504 length isoforms. We also detected RNA methylation in 12 viral genes and RNA hyper-editing in the longer 5’-UTR transcript isoform of ORF 19 gene.



2010 ◽  
Vol 155 (11) ◽  
pp. 1823-1837 ◽  
Author(s):  
Benoît Muylkens ◽  
Damien Coupeau ◽  
Ginette Dambrine ◽  
Sascha Trapp ◽  
Denis Rasschaert


1999 ◽  
Vol 8 (6) ◽  
pp. 661-671 ◽  
Author(s):  
Zhiguang Guo ◽  
Jikun Shen ◽  
Deepak Mital ◽  
Yuanze Hong ◽  
Ramon Alemany ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document