scholarly journals Pyruvate dehydrogenase kinase 1 interferes with glucose metabolism reprogramming and mitochondrial quality control to aggravate stress damage in cancer

2020 ◽  
Vol 11 (4) ◽  
pp. 962-973 ◽  
Author(s):  
Xinyue Deng ◽  
Quan Wang ◽  
Meiyu Cheng ◽  
Yingying Chen ◽  
Xiaoyu Yan ◽  
...  
2015 ◽  
Vol 194 (12) ◽  
pp. 6082-6089 ◽  
Author(s):  
Zheng Tan ◽  
Na Xie ◽  
Huachun Cui ◽  
Douglas R. Moellering ◽  
Edward Abraham ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yeram Park ◽  
Deunsol Hwang ◽  
Hun-Young Park ◽  
Jisu Kim ◽  
Kiwon Lim

Aims. Hypoxic exposure improves glucose metabolism. We investigated to validate the hypothesis that carbohydrate (CHO) oxidation could increase in mice exposed to severe hypoxic conditions. Methods. Seven-week-old male ICR mice (n=16) were randomly divided into two groups: the control group (CON) was kept in normoxic condition (fraction of inspired O2=21%) and the hypoxia group (HYP) was exposed to hypoxic condition (fraction of inspired O2=12%, ≈altitude of 4,300 m). The CON group was pair-fed with the HYP group. After 3 weeks of hypoxic exposure, we measured respiratory metabolism (energy expenditure and substrate utilization) at normoxic conditions for 24 hours using an open-circuit calorimetry system. In addition, we investigated changes in carbohydrate mechanism-related protein expression, including hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), and regulator of the genes involved in energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC1α) in soleus muscle. Results. Energy expenditure (EE) and CHO oxidation over 24 hours were higher in the HYP group by approximately 15% and 34% (p<0.001), respectively. Fat oxidation was approximately 29% lower in the HYP group than the CON group (p<0.01). Body weight gains were significantly lower in the HYP group than in the CON group (CON vs. HYP; 1.9±0.9 vs. −0.3±0.9; p<0.001). Hypoxic exposure for 3 weeks significantly reduced body fat by approximately 42% (p<0.001). PDH and PGC1α protein levels were significantly higher in the HYP group (p<0.05). Additionally, HK2 was approximately 21% higher in the HYP group. Conclusions. Hypoxic exposure might significantly enhance CHO oxidation by increasing the expression of PDH and HK2. This investigation can be useful for patients with impaired glucose metabolism, such as those with type 2 diabetes.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 325
Author(s):  
Carolina Venturoli ◽  
Ilaria Piga ◽  
Matteo Curtarello ◽  
Martina Verza ◽  
Giovanni Esposito ◽  
...  

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Hang Zhu ◽  
Hao Xue ◽  
Qin-Hua Jin ◽  
Jun Guo ◽  
Yun-Dai Chen

Dysfunction of cardiac cells under hypoxia has been identified as an essential event leading to myocytes functional failure. MiRNAs are importantly regulatory small-noncoding RNAs that negatively regulate gene expression through the direct binding of 3′-UTR region of their target mRNAs. Recent studies have demonstrated that miRNAs are aberrantly expressed in the cardiovascular system under pathological conditions.Pyruvate dehydrogenase kinase 1 (PDK1) is a kinase which phosphorylates pyruvate dehydrogenase to inactivate it, leading to elevated anaerobic glycolysis and decreased cellular respiration. In the present study, we report that miR-138 expressions were significantly suppressed under long exposure to hypoxia. In addition, overexpression of miR-138 protects human cardiac cells against hypoxia. We observed miR-138 inhibits glycolysis but promotes mitochondrial respiration through directly targetting PDK1. Moreover, we demonstrate that hypoxia induces cardiac cell death through increased glycolysis and decreased mitochondrial respiration. Inhibition of glycolysis by either glycolysis inhibitor or knockdown glycolysis enzymes, Glucose transportor 1 (Glut1) or PDK1 contributes to cardiac cells’ survival. The cell sentivity to hypoxia was recovered when the PDK1 level was restored in miR-138 overexpressing cardiac cells. The present study leads to the intervention of novel therapeutic strategies against cardiac cells dysfunction during surgery or ischemia.


2007 ◽  
Vol 27 (21) ◽  
pp. 7381-7393 ◽  
Author(s):  
Jung-whan Kim ◽  
Ping Gao ◽  
Yen-Chun Liu ◽  
Gregg L. Semenza ◽  
Chi V. Dang

ABSTRACT Hypoxia is a pervasive microenvironmental factor that affects normal development as well as tumor progression. In most normal cells, hypoxia stabilizes hypoxia-inducible transcription factors (HIFs), particularly HIF-1, which activates genes involved in anaerobic metabolism and angiogenesis. As hypoxia signals a cellular deprivation state, HIF-1 has also been reported to counter the activity of MYC, which encodes a transcription factor that drives cell growth and proliferation. Since many human cancers express dysregulated MYC, we sought to determine whether HIF-1 would in fact collaborate with dysregulated MYC rather countering its function. Here, using the P493-6 Burkitt's lymphoma model with an inducible MYC, we demonstrate that HIF-1 cooperates with dysregulated c-Myc to promote glycolysis by induction of hexokinase 2, which catalyzes the first step of glycolysis, and pyruvate dehydrogenase kinase 1, which inactivates pyruvate dehydrogenase and diminishes mitochondrial respiration. We also found the collaborative induction of vascular endothelial growth factor (VEGF) by HIF-1 and dysregulated c-Myc. This study reports the previously unsuspected collaboration between HIF-1 and dysregulated MYC and thereby provides additional insights into the regulation of VEGF and the Warburg effect, which describes the propensity for cancer cells to convert glucose to lactate.


Sign in / Sign up

Export Citation Format

Share Document