Defining Best 3D Practices in Archaeology

2014 ◽  
Vol 2 (4) ◽  
pp. 353-365 ◽  
Author(s):  
Fabrizio Galeazzi ◽  
Holley Moyes ◽  
Mark Aldenderfer

AbstractThis research aims to investigate the potential use of three-dimensional (3D) technologies for the analysis and interpretation of heritage sites. This article uses different 3D survey technologies to find the most appropriate methods to document archaeological stratigraphy, based on diverse environmental conditions, light exposures, and varied surfaces. The use of 3D laser scanners and dense stereo matching (DSM) techniques is now well established in archaeology. However, no convincing comparisons between those techniques have been presented. This research fills this gap to provide an accurate data assessment for the Las Cuevas site (Belize) and represents a starting point for the definition of a sharable methodology. Tests in Las Cuevas were conducted to compare both accuracy and density reliability in cave environments using two different techniques: triangulation light laser scanner and DSM. This study finds that DSM is the most economical, portable, and flexible approach for the 3D documentation of archaeological sites today. In fact, DSM allows the 3D documentation process to be done more efficiently, reducing both data acquisition and processing time. Nonetheless, the quantitative comparison presented in this paper underscores the need to integrate this technique with other technologies when the data acquisition of micro-stratigraphy is required.

Author(s):  
A. Estela ◽  
J. Hamacher

The "Instituto Colombiano de Antropología e Historia" (ICANH) started a new conservation project for the "San Agustín Archaeological Park" (Huila, Colombia) in 2013. The objectives of this project are the documentation, conservation, and preservation of the numerous monolithic statues mainly by integrating the use of new technologies (3D models). A first phase of the project has been completed, resulting in three-dimensional models of 66 of the monolithic sculptures in San Agustín. The methodology developed in this first phase will show the way for other heritage sites in Colombia and for subsequent phases applied to the archaeological park. The 3D data has been obtained using two types of data acquisition technology: the Mantis Vision F5 using infrared structured-light (SL) and a laser scanner based on the phase shift (PS) technology, the Z+F Imager 5010. The results show that future phases need improvement in data acquisition. Mainly the data obtained with the hand held scanner shows many lacunae. This article presents the observations during data processing on the basis of one sculpture, "Escultura 23". In conclusion, this first phase showed where to improve for the succeeding ones, for instance the detail of the meshes need to be increased if the models are to be used for detailed conservation and preservation purposes.


2018 ◽  
Vol 10 (2) ◽  
pp. 417 ◽  
Author(s):  
Simone Mineo ◽  
Giovanna Pappalardo ◽  
Michele Mangiameli ◽  
Santo Campolo ◽  
Giuseppe Mussumeci

A rockfall analysis at one of the most relevant cultural heritage sites of northeastern Sicily (Italy) is presented herein with the aim of assessing the hazard arising from the unstable conditions of the rock cliff of Taormina city, upon which the Saracen Castle is perched on its top. Several rockfalls affected this area in the latest years, representing a serious threat for the safety of inhabitants and tourists. Therefore, the qualitative Evolving Rockfall Hazard Assessment (ERHA) was applied for the hazard zonation, supported by rock mass surveys and Terrestrial Laser Scanner prospecting. Kinematic analysis revealed that the unstable rock failure patterns are represented by planar/wedge sliding and toppling, while simulation of potential rockfalls allowed studying the impact of future events in terms of trajectory and energy. This is higher at the foot of scarps and in steeper sectors, where the application of ERHA identified a critical zone close to the inhabited center, which is one of the main elements at risk, along with a pedestrian tourist path. Achieved results represent a starting point for the definition of risk management strategies and provide a scientific contribution to the study of hazard and risk arising from rockfall occurrence.


2019 ◽  
Vol 11 (19) ◽  
pp. 2205 ◽  
Author(s):  
Rodríguez-Martín ◽  
Rodríguez-Gonzálvez ◽  
Ruiz de Oña Crespo ◽  
González-Aguilera

The three-dimensional registration of industrial facilities has a great importance for maintenance, inspection, and safety tasks and it is a starting point for new improvements and expansions in the industrial facilities context. In this paper, a comparison between the results obtained using a novel portable mobile mapping system (PMMS) and a static terrestrial laser scanner (TLS), widely used for 3D reconstruction in civil and industrial scenarios, is carried out. This comparison is performed in the context of industrial inspection tasks, specifically in the thermal and fluid-mechanics facilities in a hospital. The comparison addresses the general reconstruction of a machine room, focusing on the quantitative and qualitative analysis of different elements (e.g., valves, regulation systems, burner systems and tanks, etc.). The validation of the PMMS is provided considering the TLS as ground truth and applying a robust statistical analysis. Results come to confirm the suitability of the PMMS to perform inspection tasks in industrial facilities.


1966 ◽  
Vol 6 (4) ◽  
pp. 402-423 ◽  
Author(s):  
H. A. Buchdahl

SummaryIt is known that to every proper homogeneous Lorentz transformation there corresponds a unique proper complex rotation in a three-dimensional complex linear vector space, the elements of which are here called “rotors”. Equivalently one has a one-one correspondence between rotors and self- dual bi-vectors in space-time (w-space). Rotor calculus fully exploits this correspondence, just as spinor calculus exploits the correspondence between real world vectors and hermitian spinors; and its formal starting point is the definition of certain covariant connecting quantities τAkl which transform as vectors under transformations in rotor space (r-space) and as tensors of valence 2 under transformations in w-space.


2002 ◽  
Author(s):  
Malgorzata Kujawinska ◽  
Robert Sitnik ◽  
Michal E. Pawlowski ◽  
Piotr Garbat ◽  
Marek G. Wegiel

Author(s):  
S. Ricci ◽  
F. Antonelli ◽  
C. Sacco Perasso

Submerged stone archaeological artefacts are bioeroded by endolithic microbiota (cyanobacteria, algae and fungi) and macroborers (Porifera, Bivalvia and Sipuncula). Optical microscope and SEM observations permit to analyse the bioerosion traces and to identify bioeroders. Data obtained with these techniques cannot be used to estimate volumes of material bioeroded. This aspect require the need to collect three-dimensional, close-range data from artefact. In this work we illustrate two 3D imaging techniques used to study bioerosion phenomena of underwater Cultural Heritage. In particular Digital Video Microscope permit the elaboration of 3D images, which are widely employed for close-range acquisitions. Underwater Laser Scanner documents the in situ degradation of submerged artefacts. This research aims to sensitize specialist figures in the study 3D offering a starting point for future collaborations that could lead to interesting results.


Author(s):  
R. Quattrini ◽  
C. Battini ◽  
R. Mammoli

Recently we assist to an increasing availability of HBIM models rich in geometric and informative terms. Instead, there is still a lack of researches implementing dedicated libraries, based on parametric intelligence and semantically aware, related to the architectural heritage. Additional challenges became from their portability in non-desktop environment (such as VR). The research article demonstrates the validity of a workflow applied to the architectural heritage, which starting from the semantic modeling reaches the visualization in a virtual reality environment, passing through the necessary phases of export, data migration and management. The three-dimensional modeling of the classical Doric order takes place in the BIM work environment and is configured as a necessary starting point for the implementation of data, parametric intelligences and definition of ontologies that exclusively qualify the model. The study also enables an effective method for data migration from the BIM model to databases integrated into VR technologies for AH. Furthermore, the process intends to propose a methodology, applicable in a return path, suited to the achievement of an appropriate data enrichment of each model and to the possibility of interaction in VR environment with the model.


Author(s):  
Bert Braumann ◽  
Ludger Keilig ◽  
Christoph Bourauel ◽  
Andreas Jäger

Objective Three-dimensional (3-D) morphological changes in the maxilla of patients with cleft lip and palate (CLP) have been recorded, mainly using two-dimensional cast analyses. Although these seem to be insufficient, no standardized 3-D method has been developed until now. In this study, accuracy, precision, and validity of a newly developed 3-D digital computer-aided procedure to visualize and metrically analyze the growth of the edentulous maxilla of infants with CLP have been evaluated. Patients The method was applied to 10 infants with complete unilateral CLP. Interventions Consecutive casts of the maxilla (1 week and 3, 6, and 12 months) of each patient were optically measured with a 3-D laser scanner. Following digitizing, the casts were computer reconstructed, aligned, and superimposed using specialized computer software. The distances between the surfaces were measured. Additionally, the surfaces were segmented perpendicular to the alveolar crest, the reference points being C1, C1′, C2, C2′, and I. The volumes of the resulting segments were determined and compared with one another. Results The newly developed analysis enables a visualization of the extent and direction of morphological changes in the maxilla of infants with CLP. With this method it is possible to quantify these changes of the volume of defined alveolar segments. Conclusions The 3-D analysis developed is an ideal tool for the examination of 3-D morphological changes in the edentulous maxilla of patients with CLP. The results will serve as the starting point for a longitudinal study on the efficacy of different methods, not only of presurgical infant orthopedics but also of surgical procedures.


Author(s):  
V. Katsichti ◽  
G. Kontogianni ◽  
A. Georgopoulos

Abstract. In archaeological excavations, many small fragments or artefacts are revealed whose fine details sometimes should be captured in 3D. In general, 3D documentation methods fall into two main categories: Range-Based modelling and Image-Based modelling. In Range Based modelling, a laser scanner (Time of Flight, Structured light, etc.) is used for the raw data acquisition in order to create the 3D model of an object. The above method is accurate enough but is still very expensive in terms of equipment. On the other hand, Image-Based modelling, is affordable because the equipment required is merely a camera with the appropriate lens, and possibly a turntable and a tripod. In this case, the 3D model of an object is created by suitable processing of images which are taken around the object with a large overlap. In this paper, emphasis is given on the effectiveness of 3D models of frail archaeological finds originate from the palatial site of Ayios Vasileios in Laconia in the south-eastern Peloponnese, using low-cost equipment and methods. The 3D model is also produced using various, mainly freeware, hence low-cost, software and the results are compared to those from a well-established commercial one.


Sign in / Sign up

Export Citation Format

Share Document