scholarly journals Minerālo saistvielu pētījumi Silikātu materiālu institūtā

2018 ◽  
Vol 35 ◽  
pp. 134-159
Author(s):  
Janīna Sētiņa ◽  
Inna Juhņeviča ◽  
Jānis Baroniņš ◽  
Liene Gulbe

Parādīti pēdējās desmitgades pētījumi minerālo saistvielu jomā. Pētīta dažādu aktīvo ķīmisko piedevu ietekme uz betona struktūru, mehāniskajām un fizikālajām īpašībām. Novērtēta iegūto betonu korozijas izturība pret sulfātu sāļu šķīdumiem. Pētīta dažādu rūpniecisko blakus produktu – pelnu – kā pucolānu piedevas ietekme uz betona īpašībām.Investigation of Mineral Binders in the Institute of Silicate MaterialsThe influence of natural and artificial pozzolanic and micro-filler additives on the cement paste hydration process, structure, properties was studied. Different additives and chemical compositions were used: micro- and nano-silica, amorphous silicon dioxide synthesized by sol-gel method, glass powder, highly disperse sand, different types of ash. The pozzolanic activity of additives mainly depends on quantity and specific surface area, i. e., the dispersity of active SiO2 and Al2O3. Depending on the pozzolanic activity chemical additives can be used as concrete aggregates or as active additives.The influence of superplasticizer Semflow MC (SP) on microstructure and properties of concrete was investigated. The compressive strength of concrete with SP increased to 154 MPa, corresponding to HPC. The capillary absorption of water and solutions containing sulphate ions into HPC depends on amount of SP. The depth of penetration of solution in the samples decreases consistently by increasing the amount of SP. The formation of crystalline phase during maturation was analysed, and it was found that by increasing testing time the amount of portlandite decreased and calcium hydrosilicate formed. The concrete samples with low W/C ratio, pozzolanic additives and SP up to 2.5 % according mechanical and chemical properties conform to the characteristics of HPC. The investigated concrete has high chemical resistance to solutions containing sulphate ions.Keywords – binders, concrete, pozzolanic additives, ash, concrete corrosion

Author(s):  
Snehamol Mathew ◽  
Priyanka Ganguly ◽  
Stephen Rhatigan ◽  
Vignesh Kumaravel ◽  
Ciara Byrne ◽  
...  

Indoor surface contamination by microbes is a major public health concern. A damp environment is one potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO<sub>2</sub>) can effectively curb this growing threat.<b> </b>Metal-doped titania in anatase phase has been proved as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu) doped TiO<sub>2 </sub>(Cu-TiO<sub>2</sub>) was evaluated against <i>Escherichia coli</i> (Gram-negative) and <i>Staphylococcus aureus</i> (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO<sub>2 </sub>was carried out <i>via</i> sol-gel technique. Cu-TiO<sub>2</sub> further calcined at various temperatures (in the range of 500 °C – 700 °C) to evaluate the thermal stability of TiO<sub>2</sub> anatase phase. The physico-chemical properties of the samples were characterised through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV-visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO<sub>2</sub> was maintained well, up to 650 °C, by the Cu dopant. UV-DRS results suggested that the visible light absorption property of Cu-TiO<sub>2 </sub>was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasises the introduction of Cu<sup>+</sup> and Cu<sup>2+</sup> ions by replacing Ti<sup>4+</sup> ions in the TiO<sub>2</sub> lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9%) was attained in 30 mins of visible light irradiation by Cu-TiO<sub>2</sub>.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinghong Zeng ◽  
Shengbo Chen ◽  
Yuanzhi Zhang ◽  
Yongling Mu ◽  
Rui Dai ◽  
...  

AbstractWe report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.


2011 ◽  
Vol 382 ◽  
pp. 372-374
Author(s):  
Yong Jiang ◽  
Zhi Bin Jiang ◽  
Guo Jie Shao ◽  
Dong Cheng Guo ◽  
Yu Tian ◽  
...  

Purpose: The purpose of this study was to study the compositions of the polygonaceae medicinal plants called rumex root. Methods: Solvent method and chromatography was used to purificate the chemical compositions of Rumex, and the molecular structure of the compound was identified by physical and chemical properties and spectral data. Results: Two compounds were obtained from the ethanol extract of rumex root, which were identified as Chrysophanol and Physcione. Conclusions: Experimental basis was provided for the further study of the active ingredients of rumex root and the development and utilization of medical resources.


2011 ◽  
Vol 295-297 ◽  
pp. 813-816 ◽  
Author(s):  
Li Liu

Silicon dioxide-based nanocomposites offer large loading capacity for various doping chemicals or molecular complexes, high surface to volume ratio and customizable surface chemistry for the creation and development of novel sensors and devices [1-2]. When compared with other sol-gel materials, xerogels represent a class of nanocomposites that are relatively easy to fabricate but with unique thermal, acoustic, optical and mechanical properties for rapid sensor or device prototyping development [3-4]. Xerogels in solids are formed by controlled evaporation of the liquid in the hydro-gel. Their porosity and morphology depend largely on the temperature, gel chemical compositions and pH in the fabrication process. When impregnated with fluorescent compounds in their nanosize cavities, the doped xerogels exhibit strong and stable fluorescence properties that are useful for the developing of ion-exchange sensors and optical devices. However, the use of these fluorescently doped xerogels in forensic applications was still largely unexplored.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Norhaniza Yusof

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.


2018 ◽  
Vol 89 (2) ◽  
pp. 416-425
Author(s):  
William Giovanni Cortés-Ortiz ◽  
Alexander Baena-Novoa ◽  
Carlos Alberto Guerrero-Fajardo

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Donggen Huang ◽  
Tianzi Yang ◽  
Zhuanghong Mo ◽  
Qin Guo ◽  
Shuiqing Quan ◽  
...  

The graphene (GR) was prepared by an improved electrochemical stripping method using a high-purity graphite rod as raw material and high temperature heat reduction in hydrogen atmosphere, and the graphene/TiO2(GR/TiO2) composite nanomaterials were manufactured by the method of sol-gel and high temperature crystallization in hydrogen atmosphere using butyl titanate and electrolysis graphene as precursors. The physical and chemical properties of the composites had been characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer (UV-Vis), scanning electron microscopy (SEM), Transmission Electron Microscope (TEM),  and specific surface area (SSA) by BET method. The photocatalytic properties of GR/TiO2composites nanomaterials in anoxic water were studied by using 2,4-dichlorophenoxyacetic acid (2,4-D) as probe. The results showed that graphite was well intercalated and peeled by a facile electrolysis method in different electric field environment; a well dispersed and rings structure of graphene was prepared by coupling ultrasound-assisted changing voltage electrochemical stripping technology. The as-prepared GR/TiO2composites had good performance for the photocatalytic degradation of 2,4-D in anoxic water; the chlorines were removed from benzene ring; the middle products of dichlorophenol, chlorophenol, phloroglucinol, and so forth were produced from the photocatalytic redox reaction of 2,4-D in anoxic water; parts of 2,4-D were decomposed completely, and CO2and H2O were produced.


Sign in / Sign up

Export Citation Format

Share Document