scholarly journals ASSESSING GREENHOUSE GAS EXCHANGE OF AGRICULTURAL CROPS BY FLUX MEASUREMENTS IN THRACE PART OF TURKEY

AGROFOR ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Levent ŞAYLAN ◽  
Toprak ASLAN ◽  
Nilcan ALTINBAŞ ◽  
Serhan YEŞİLKÖY ◽  
Barış ÇALDAĞ ◽  
...  

Agriculture plays an important role in the global greenhouse gas (GHG) budget andits cycle. CO2 is one of the most important greenhouse gases, and plants releaseCO2 into the atmosphere by respiration and sink it by photosynthesis from theatmosphere. In addition, soil has an essential role in this exchange. Unfortunately,studies on the measurement of greenhouse gases above agricultural crops ininternationally accepted methods are not sufficient, especially in developingcountries. Thus, it is a clear need to determine carbon exchange of agriculturalcrops and activities (sink and emission) by taking into consideration of the specificconditions such as climate, crop variety, soil etc. Eddy Covariance (EC) is one ofthe widely used micrometeorological methods in the world for flux measurementstudies. Developments in measurement and analysis by instruments have allowedthis method to be applied more by researchers for the studies on GHG exchange. Inthis research, carbon exchanges (sink and emission) of watermelon grown inAtatürk Soil, Water and Agricultural Meteorology Research Institute located in theThrace part of Turkey, was measured using the Eddy Covariance method. Finally,estimated gas exchange above crops will be presented.

2011 ◽  
Vol 8 (9) ◽  
pp. 2815-2831 ◽  
Author(s):  
W. Eugster ◽  
T. DelSontro ◽  
S. Sobek

Abstract. Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4) fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE) with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.


2021 ◽  
Author(s):  
Richard Sims ◽  
Brian Butterworth ◽  
Tim Papakyriakou ◽  
Mohamed Ahmed ◽  
Brent Else

<p>Remoteness and tough conditions have made the Arctic Ocean historically difficult to access; until recently this has resulted in an undersampling of trace gas and gas exchange measurements. The seasonal cycle of sea ice completely transforms the air sea interface and the dynamics of gas exchange. To make estimates of gas exchange in the presence of sea ice, sea ice fraction is frequently used to scale open water gas transfer parametrisations. It remains unclear whether this scaling is appropriate for all sea ice regions. Ship based eddy covariance measurements were made in Hudson Bay during the summer of 2018 from the icebreaker CCGS Amundsen. We will present fluxes of carbon dioxide (CO<sub>2</sub>), heat and momentum and will show how they change around the Hudson Bay polynya under varying sea ice conditions. We will explore how these fluxes change with wind speed and sea ice fraction. As freshwater stratification was encountered during the cruise, we will compare our measurements with other recent eddy covariance flux measurements made from icebreakers and also will compare our turbulent CO<sub>2 </sub>fluxes with bulk fluxes calculated using underway and surface bottle pCO<sub>2</sub> data. </p><p> </p>


2021 ◽  
Author(s):  
Matthias Mauder ◽  
Andreas Ibrom ◽  
Luise Wanner ◽  
Frederik De Roo ◽  
Peter Brugger ◽  
...  

Abstract. The eddy-covariance method provides the most direct estimates for fluxes between ecosystems and the atmosphere. However, dispersive fluxes can occur in the presence of secondary circulations, which can inherently not be captured by such single-tower measurements. In this study, we present options to correct local flux measurements for such large-scale transport based on a non-local parametric model that has been developed from a set of idealized LES runs for three real-world sites. The test sites DK-Sor, DE-Fen, and DE-Gwg, represent typical conditions in the mid-latitudes with different measurement height, different terrain complexity and different landscape-scale heterogeneity. Different ways to determine the boundary-layer height, which is a necessary input variable for modelling the dispersive fluxes, are applied, either from operational radio-soundings and local in-situ measurements for the flat site or from backscatter-intensity profile obtained from collocated ceilometers for the two sites in complex terrain. The adjusted total fluxes are evaluated by assessing the improvement in energy balance closure and by comparing the resulting latent heat fluxes with evapotranspiration rates from nearby lysimeters. The results show that not only the accuracy of the flux estimates is improved but also the precision, which is indicated by RMSE values that are reduced by approximately 50 %. Nevertheless, it needs to be clear that this method is intended to correct for a bias in eddy-covariance measurements due to the presence of large-scale dispersive fluxes. Other reasons potentially causing a systematic under- or overestimation, such as low-pass filtering effects and missing storage terms, still need to be considered and minimized as much as possible. Moreover, additional transport induced by surface heterogeneities is not considered.


2018 ◽  
Vol 11 (11) ◽  
pp. 6075-6090 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10 m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from 4 months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar and wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.


2012 ◽  
Vol 12 (16) ◽  
pp. 7809-7823 ◽  
Author(s):  
R. Zalakeviciute ◽  
M. L. Alexander ◽  
E. Allwine ◽  
J. L. Jimenez ◽  
B. T. Jobson ◽  
...  

Abstract. As part of the MILAGRO 2006 field campaign, the exchange of atmospheric aerosols with the urban landscape was measured from a tall tower erected in a heavily populated neighborhood of Mexico City. Urban submicron aerosol fluxes were measured using an eddy covariance method with a quadrupole aerosol mass spectrometer during a two week period in March, 2006. Nitrate and ammonium aerosol concentrations were elevated at this location near the city center compared to measurements at other urban sites. Significant downward fluxes of nitrate aerosol, averaging −0.2 μg m−2 s−1, were measured during daytime. The urban surface was not a significant source of sulfate aerosols. The measurements also showed that primary organic aerosol fluxes, approximated by hydrocarbon-like organic aerosols (HOA), displayed diurnal patterns similar to CO2 fluxes and anthropogenic urban activities. Overall, 47% of submicron organic aerosol emissions were HOA, 35% were oxygenated (OOA) and 18% were associated with biomass burning (BBOA). Organic aerosol fluxes were bi-directional, but on average HOA fluxes were 0.1 μg m−2 s−1, OOA fluxes were −0.03 μg m−2 s−1, and BBOA fluxes were −0.03 μg m−2 s−1. After accounting for size differences (PM1 vs PM2.5) and using an estimate of the black carbon component, comparison of the flux measurements with the 2006 gridded emissions inventory of Mexico City, showed that the daily-averaged total PM emission rates were essentially identical for the emission inventory and the flux measurements. However, the emission inventory included dust and metal particulate contributions, which were not included in the flux measurements. As a result, it appears that the inventory underestimates overall PM emissions for this location.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Georg Jocher ◽  
Alexander Schulz ◽  
Christoph Ritter ◽  
Roland Neuber ◽  
Klaus Dethloff ◽  
...  

In this paper we present one year of meteorological and flux measurements obtained near Ny-Ålesund, Spitsbergen. Fluxes are derived by the eddy covariance method and by a hydrodynamic model approach (HMA) as well. Both methods are compared and analyzed with respect to season and mean wind direction. Concerning the wind field we find a clear distinction between 3 prevailing regimes (which have influence on the flux behavior) mainly caused by the topography at the measurement site. Concerning the fluxes we find a good agreement between the HMA and the eddy covariance method in cases of turbulent mixing in summer but deviations at stable conditions, when the HMA almost always shows negative fluxes. Part of the deviation is based on a dependence of HMA fluxes on friction velocity and the influence of the molecular boundary layer. Moreover, the flagging system of the eddy covariance software package TK3 is briefly revised. A new quality criterion for the use of fluxes obtained by the eddy covariance method, which is based on integral turbulence characteristics, is proposed.


2018 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10-m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from four months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar/wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.


2006 ◽  
Vol 86 (3) ◽  
pp. 373-400 ◽  
Author(s):  
E. Pattey ◽  
G. Edwards ◽  
I B Strachan ◽  
R L Desjardins ◽  
S. Kaharabata ◽  
...  

This is a discussion of the available technology for measuring turbulent fluxes using instrumented towers. This review focuses on the flux measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) for agricultural systems and the development of standards and protocols for measuring them. Agroecosystems present unique challenges because they undergo large leaf area index (LAI) and canopy architecture changes in a relatively short period of time (i.e., months) coupled with the fact that many of the greenhouse gas sources are diffuse. This review examines all aspects of the theory and application of the micrometeorological techniques, with focus on the flux gradient, eddy accumulation and eddy covariance techniques. Instrument placement, sens or response and noise characteristics are also explored. Innovative applications of micrometeorological methods are discussed for closed- and open-path trace gas sensors and commonly used meteorological instrumentation. The use of fast response single-pass optical tunable diode laser (i.e., CH4, N2O) and infrared gas analyzers (i.e., CO2, H2O) is described. Consideration is also taken of the trace gas sensors’flow system design, mixing ratio measurement, and data acquisition and reduction requirements for micrometeorological flux measurement. Procedures are outlined for the meteorological instrumentation necessary for eddy covariance-based energy budget measurement including ultrasonic anemometry. Key words: Tower-based greenhouse gas flux measurements, nitrous oxide, methane, carbon dioxide, tunable diode laser


2007 ◽  
Vol 43 (4) ◽  
Author(s):  
Nelson L. Dias ◽  
Henrique F. Duarte ◽  
Selma R. Maggiotto ◽  
Leocádio Grodzki

Sign in / Sign up

Export Citation Format

Share Document