scholarly journals Bioelectrical Impedance Analysis of Body Composition in Karate Athletes Regarding The Preparatory Period // Analiza telesnog sastava karatista bioelektričnom impedansom pre i posle pripremnog perioda

Author(s):  
Jasmina Pluncević Gligoroska ◽  
Sanja Mančevska ◽  
Niki Matveeva ◽  
Elizabeta Sivevska ◽  
Žarko Kostovski

The aim of the paper was to asses changes in body composition using bioelectrical impedance analysis (BIA) methodology in members of national karate team after teen week preparatory training period. The investigation was carried out on 11 male karate contestants, aged 18 to 28 years mean age (21.82± 3.58). The body composition was analyzed with In Body 720. The BIA outcomes were divided in 3 group of variables: body fluid and body composition variables, obesity diagnose variables and segmental analysis variables. All BIA variables were insignificantly higher at second measuring (p>005). Only Body mass index (BMI=24.1 vs 24.55); mineral (4.69 kg vs 4.77 kg) and osseous (3.85 kg vs 3.92 kg), were significantly higher (p≤0.05) after preparatory period. Body fat mass (BFM=10.34 kg vs 10.75 kg, p=0.329) and body fat percent (BF%= 12.73 vs13.22%) insignificantly increased after preparatory period. The skeletal mass has changed from 40.03kg to 40.55kg (p=0.276). Body composition analysis, changes in weight, BMI and body fluids are essential for weight categories dependent sports such as karate. Positive changes in body components and in body fluids suggest that the training process during the preparatory period did not show negative effects on body components and the hydration of the karate athletes.

2018 ◽  
Author(s):  
Carla M Prado ◽  
Camila LP Oliveira ◽  
M Cristina Gonzalez ◽  
Steven B Heymsfield

Body composition assessment is an important tool in both clinical and research settings able to characterize the nutritional status of individuals in various physiologic and pathologic conditions. Health care professionals can use the information acquired by body composition analysis for the prevention and treatment of diseases, ultimately improving health status. Here we describe commonly used techniques to assess body composition in healthy individuals, including dual-energy x-ray absorptiometry, bioelectrical impedance analysis, air displacement plethysmography, and ultrasonography. Understanding the key underlying concept(s) of each assessment method, as well as its advantages and limitations, facilitates selection of the method of choice and the method of the compartment of interest. This review contains 5 figures, 3 tables and 52 references Key words: air displacement plethysmography, bioelectrical impedance analysis, body composition, disease, dual-energy x-ray absorptiometry, health, muscle mass, nutritional status, obesity, sarcopenia, ultrasound fat mass


2014 ◽  
pp. 1-5
Author(s):  
T. KAMO ◽  
H. ISHII ◽  
D. TAKAHASHI ◽  
K. IWAGAYA ◽  
T. ISHIDA ◽  
...  

Background: Body composition is an important component of health related fitness. Near-infrared spectroscopy (NIRS) is a non-invasive, simple and rapid method of assessing body fat percentage. However, it is unknown whether NIRS can accurately estimate FFM in community-dwelling frail elderly. Objectives: This study aimed to compare NIRS with bioelectrical impedance analysis (BIA) in FFM measurement. Design: Cross-sectional study. Setting: Shizuoka, Japan. Participants: The study population comprised 53 community-dwelling frail elderly (15 men, 38 women; mean age 84.8±6.4 years; body mass index 19.7±3.5 kg/m2). Measurement: FFM and percentage fat mass (%FM) were estimated using a NIRS device at two sites (biceps and calf) and compared to body composition measured by BIA. Simple linear regression and Bland–Altman analyses were used to determine agreement between the methods. Results: FFM determined by BIA highly correlated with that determined by NIRS at both the biceps and calf (r=0.92 for both; p<0.001). The correlation coefficients for %FM estimated by NIRS were slightly lower (r=0.70 for biceps; r=0.66 for calf). In NIRS assessments, systematic biases were found for %FM but not for FFM. Conclusion: NIRS has significant potential for body composition analysis. Further comparative and longitudinal studies need to be conducted using an agreed reference analysis method to find a simple and more suitable method that can be applied among the community-dwelling frail elderly.


Author(s):  
Adam W. Powell ◽  
Samuel G. Wittekind ◽  
Tarek Alsaied ◽  
Adam M. Lubert ◽  
Clifford Chin ◽  
...  

Background Adults with a Fontan circulation tend to have myopenia and elevated adiposity when measured by dual energy x‐ray absorptiometry. Bioelectrical impedance analysis is an alternative validated approach to assess body composition. We used bioelectrical impedance analysis to compare body composition between pediatric patients with a Fontan circulation and control individuals without heart disease. Methods and Results A retrospective chart review identified all patients aged <22 years with a Fontan circulation who presented for cardiopulmonary exercise testing and bioelectrical impedance analysis from April 2019 to January 2020. Data were compared with control subjects tested during the same period. We studied 47 patients with a Fontan circulation (53% boys; 15±3.1 years) and 165 controls (48% boys; 14.4±2.5 years). Fontan status was associated with shorter height, but similar age, sex, and overall body mass. Patients with Fontan had lower lean body mass (−12.0±22%, Z‐score −0.5±1, P =0.005), skeletal muscle mass (−13.6±1.4%; Z‐score, −0.5±1; P =0.004), skeletal muscle indexed to height (−10.3±13.3%; Z‐score, −0.5±1; P =0.005), and higher percent body fat (+13.8±18.6%; Z‐score, 0.4±1.2; P =0.03). Greater skeletal muscle mass was associated with higher peak oxygen consumption ( r 2 =0.52, P <0.0001) and oxygen pulse ( r 2 =0.68, P <0.0001). Patients who had suffered a late complication (ie, heart transplant referral or evidence of extracardiac organ dysfunction) of the Fontan operation (13 of 47, 27.7%) had lower skeletal muscle mass ( P =0.048) and higher body fat percentage ( P =0.003). Conclusions The Fontan circulation is associated with marked myopenia and increased adiposity. Higher muscle mass was associated with better exercise capacity. Fontan complications are associated with lower muscle mass and increased adiposity.


2011 ◽  
Vol 107 (10) ◽  
pp. 1545-1552 ◽  
Author(s):  
Barbara E. Lingwood ◽  
Anne-Martine Storm van Leeuwen ◽  
Angela E. Carberry ◽  
Erin C. Fitzgerald ◽  
Leonie K. Callaway ◽  
...  

Accurate assessment of neonatal body composition is essential to studies investigating neonatal nutrition or developmental origins of obesity. Bioelectrical impedance analysis or bioimpedance analysis is inexpensive, non-invasive and portable, and is widely used in adults for the assessment of body composition. There are currently no prediction algorithms using bioimpedance analysis in neonates that have been directly validated against measurements of fat-free mass (FFM). The aim of the study was to evaluate the use of bioimpedance analysis for the estimation of FFM and percentage of body fat over the first 4 months of life in healthy infants born at term, and to compare these with estimations based on anthropometric measurements (weight and length) and with skinfolds. The present study was an observational study in seventy-seven infants. Body fat content of infants was assessed at birth, 6 weeks, 3 and 4·5 months of age by air displacement plethysmography, using the PEA POD body composition system. Bioimpedance analysis was performed at the same time and the data were used to develop and test prediction equations for FFM. The combination of weight+sex+length predicted FFM, with a bias of < 100 g and limits of agreement of 6–13 %. Before 3 months of age, bioimpedance analysis did not improve the prediction of FFM or body fat. At 3 and 4·5 months, the inclusion of impedance in prediction algorithms resulted in small improvements in prediction of FFM, reducing the bias to < 50 g and limits of agreement to < 9 %. Skinfold measurements performed poorly at all ages.


2005 ◽  
Vol 62 (2) ◽  
pp. 269-275 ◽  
Author(s):  
M Keith Cox ◽  
Kyle J Hartman

The need to precisely measure growth is a common denominator in many fisheries studies, but growth measures other than total masses or lengths are nearly nonexistent because more precise measurements such as body composition analysis are often too difficult and time consuming. Here, we present a means of estimating body composition in fish quickly, and after validation, without the need to sacrifice the animal. Models built with brook trout (Salvelinus fontinalis) were linear with strong validation group relationships (R2 > 0.96) for composition parameters including water, protein, fat, fat-free, and dry masses. Subject responses to bioelectrical impedance analysis were minimal, with only slight bruising (p < 0.001) with no effect on swimming, color, bleeding, or feeding. The model was also tested on the water and dry masses of 10 warmwater fish species and found to have strong correlations (R2 > 0.86), suggesting that more general relationships may exist. Nonlethal estimation of body composition using bioelectrical impedance analysis will permit increased precision in bioenergetics energy flow and compositional studies as well as permit study of community energetics and condition on spatial and temporal scales not previously possible.


2021 ◽  
Vol 9 ◽  
Author(s):  
David J. Farbo ◽  
Deborah J. Rhea

Background: Body mass index (BMI) is frequently labeled as “flawed” in assessing obesity since it cannot differentiate between muscle and fat leading to misclassifications of healthy individuals. Bioelectrical impedance analysis (BIA) may be a more accurate indicator of obesity since it can distinguish the difference between muscle and fat in children. This pilot study investigated discrepancies between BMI and BIA body composition classifications in children with high levels of physical activity.Methods: Participants were selected from three elementary schools (N = 380, K = 76, 1st = 64, 2nd = 62, 3rd = 61, 4th = 83, and 5th = 34) receiving 60 min of outdoor, unstructured play daily. BIA scales were used to collect each child's body fat percentage and BMI score, then those numbers were categorized by BIA and BMI normative values as either underweight, healthy, overweight, or obese.Results: Overall, 26% of the students were classified differently when using the normative classifications for BMI and BIA, with the largest discrepancy found in the overweight category at 38%. Similar inconsistencies were found when students were divided as younger (42%) vs older students (36%), and males (40%) vs. females (35%).Conclusions: This pilot study demonstrated that there is a significant difference in how BMI and BIA discriminate between the different body composition categories. BIA consistently shows to be a more accurate tool in assessing obesity rates in children since it directly measures body fat.


Sign in / Sign up

Export Citation Format

Share Document