scholarly journals The running kinematics of free-roaming giraffes, measured using a low cost unmanned aerial vehicle (UAV)

Author(s):  
Christopher K Basu ◽  
Francois Deacon ◽  
John R Hutchinson ◽  
Alan M Wilson

The study of animal locomotion can be logistically challenging, especially in the case of large or unhandleable animals in uncontrolled environments. Recent technological advances have permitted the use of Global Positioning System and inertial sensors in locomotion studies, but these methods require manual access to each study subject. Here we demonstrate the utility of a low cost unmanned aerial vehicle (UAV) in measuring two-dimensional running kinematics from free-roaming giraffes (Giraffa camelopardalis giraffa) in the Free State Province, South Africa. We collected 120 Hz video of running giraffes, and calibrated each video frame using metatarsal length as a constant object of scale. We tested a number of methods to measure metatarsal length. The method with the least variation used close range photography and a trigonometric equation to spatially calibrate the still image, and derive metatarsal length. In the absence of this option, a spatially calibrated surface model of the study terrain was used to estimate topographical dimensions in video footage of interest. Data for the terrain models were collected using the same equipment, during the same study period. We subsequently validated the accuracy of the UAV method by comparing similar speed measurements of a running human subject, with a gold standard method. We recommend that future users maximise the camera focal distance, and keep the subject in the central field of view. The studied giraffes used a grounded rotary gallop with a speed range of 3.4 to 6.9 ms-1 (never cantering, trotting or pacing), and lower duty factors when compared with other cursorial quadrupeds. As this pattern might result in adverse increases in peak vertical limb forces with speed, it was notable to find that contralateral limbs became more in-phase with speed. Considering the latter pattern and the modest maximal speed of giraffes, we speculate that tissue safety factors are maintained within tolerable bounds this way. Furthermore, the angular kinematics of the neck were frequently isolated from the pitching of the body during running; this may be a result of the large mass of the head and neck. Further field experiments and biomechanical models are needed to robustly test these speculations.

2018 ◽  
Author(s):  
Christopher K Basu ◽  
Francois Deacon ◽  
John R Hutchinson ◽  
Alan M Wilson

The study of animal locomotion can be logistically challenging, especially in the case of large or unhandleable animals in uncontrolled environments. Recent technological advances have permitted the use of Global Positioning System and inertial sensors in locomotion studies, but these methods require manual access to each study subject. Here we demonstrate the utility of a low cost unmanned aerial vehicle (UAV) in measuring two-dimensional running kinematics from free-roaming giraffes (Giraffa camelopardalis giraffa) in the Free State Province, South Africa. We collected 120 Hz video of running giraffes, and calibrated each video frame using metatarsal length as a constant object of scale. We tested a number of methods to measure metatarsal length. The method with the least variation used close range photography and a trigonometric equation to spatially calibrate the still image, and derive metatarsal length. In the absence of this option, a spatially calibrated surface model of the study terrain was used to estimate topographical dimensions in video footage of interest. Data for the terrain models were collected using the same equipment, during the same study period. We subsequently validated the accuracy of the UAV method by comparing similar speed measurements of a running human subject, with a gold standard method. We recommend that future users maximise the camera focal distance, and keep the subject in the central field of view. The studied giraffes used a grounded rotary gallop with a speed range of 3.4 to 6.9 ms-1 (never cantering, trotting or pacing), and lower duty factors when compared with other cursorial quadrupeds. As this pattern might result in adverse increases in peak vertical limb forces with speed, it was notable to find that contralateral limbs became more in-phase with speed. Considering the latter pattern and the modest maximal speed of giraffes, we speculate that tissue safety factors are maintained within tolerable bounds this way. Furthermore, the angular kinematics of the neck were frequently isolated from the pitching of the body during running; this may be a result of the large mass of the head and neck. Further field experiments and biomechanical models are needed to robustly test these speculations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6312 ◽  
Author(s):  
Christopher K. Basu ◽  
Francois Deacon ◽  
John R. Hutchinson ◽  
Alan M. Wilson

The study of animal locomotion can be logistically challenging, especially in the case of large or unhandleable animals in uncontrolled environments. Here we demonstrate the utility of a low cost unmanned aerial vehicle (UAV) in measuring two-dimensional running kinematics from free-roaming giraffes (Giraffa camelopardalis giraffa) in the Free State Province, South Africa. We collected 120 Hz video of running giraffes, and calibrated each video frame using metatarsal length as a constant object of scale. We tested a number of methods to measure metatarsal length. The method with the least variation used close range photography and a trigonometric equation to spatially calibrate the still image, and derive metatarsal length. In the absence of this option, a spatially calibrated surface model of the study terrain was used to estimate topographical dimensions in video footage of interest. Data for the terrain models were collected using the same equipment, during the same study period. We subsequently validated the accuracy of the UAV method by comparing similar speed measurements of a human subject running on a treadmill, with treadmill speed. At 8 m focal distance we observed an error of 8% between the two measures of speed. This error was greater at a shorter focal distance, and when the subject was not in the central field of view. We recommend that future users maximise the camera focal distance, and keep the subject in the central field of view. The studied giraffes used a grounded rotary gallop with a speed range of 3.4–6.9 ms−1 (never cantering, trotting or pacing), and lower duty factors when compared with other cursorial quadrupeds. As this pattern might result in adverse increases in peak vertical limb forces with speed, it was notable to find that contralateral limbs became more in-phase with speed. Considering the latter pattern and the modest maximal speed of giraffes, we speculate that tissue safety factors are maintained within tolerable bounds this way. Furthermore, the angular kinematics of the neck were frequently isolated from the pitching of the body during running; this may be a result of the large mass of the head and neck. Further field experiments and biomechanical models are needed to robustly test these speculations.


2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


2021 ◽  
Vol 13 (18) ◽  
pp. 3652
Author(s):  
Duo Xu ◽  
Yixin Zhao ◽  
Yaodong Jiang ◽  
Cun Zhang ◽  
Bo Sun ◽  
...  

Information on the ground fissures induced by coal mining is important to the safety of coal mine production and the management of environment in the mining area. In order to identify these fissures timely and accurately, a new method was proposed in the present paper, which is based on an unmanned aerial vehicle (UAV) equipped with a visible light camera and an infrared camera. According to such equipment, edge detection technology was used to detect mining-induced ground fissures. Field experiments show high efficiency of the UAV in monitoring the mining-induced ground fissures. Furthermore, a reasonable time period between 3:00 a.m. and 5:00 a.m. under the studied conditions helps UAV infrared remote sensing identify fissures preferably. The Roberts operator, Sobel operator, Prewitt operator, Canny operator and Laplacian operator were tested to detect the fissures in the visible image, infrared image and fused image. An improved edge detection method was proposed which based on the Laplacian of Gaussian, Canny and mathematical morphology operators. The peak signal-to-noise rate, effective edge rate, Pratt’s figure of merit and F-measure indicated that the proposed method was superior to the other methods. In addition, the fissures in infrared images at different times can be accurately detected by the proposed method except at 7:00 a.m., 1:00 p.m. and 3:00 p.m.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4705 ◽  
Author(s):  
Adil Shah ◽  
Joseph Pitt ◽  
Khristopher Kabbabe ◽  
Grant Allen

Point-source methane emission flux quantification is required to help constrain the global methane budget. Facility-scale fluxes can be derived using in situ methane mole fraction sampling, near-to-source, which may be acquired from an unmanned aerial vehicle (UAV) platform. We test a new non-dispersive infrared methane sensor by mounting it onto a small UAV, which flew downwind of a controlled methane release. Nine UAV flight surveys were conducted on a downwind vertical sampling plane, perpendicular to mean wind direction. The sensor was first packaged in an enclosure prior to sampling which contained a pump and a recording computer, with a total mass of 1.0 kg. The packaged sensor was then characterised to derive a gain factor of 0.92 ± 0.07, independent of water mole fraction, and an Allan deviation precision (at 1 Hz) of ±1.16 ppm. This poor instrumental precision and possible short-term drifts made it non-trivial to define a background mole fraction during UAV surveys, which may be important where any measured signal is small compared to sources of instrumental uncertainty and drift. This rendered the sensor incapable of deriving a meaningful flux from UAV sampling for emissions of the order of 1 g s−1. Nevertheless, the sensor may indeed be useful when sampling mole fraction enhancements of the order of at least 10 ppm (an order of magnitude above the 1 Hz Allan deviation), either from stationary ground-based sampling (in baseline studies) or from mobile sampling downwind of sources with greater source flux than those observed in this study. While many methods utilising low-cost sensors to determine methane flux are being developed, this study highlights the importance of adequately characterising and testing all new sensors before they are used in scientific research.


2020 ◽  
Vol 8 (3) ◽  
pp. 224-244
Author(s):  
Lucas Moreira Furlan ◽  
Vania Rosolen ◽  
Jepherson Salles ◽  
César Augusto Moreira ◽  
Manuel Eduardo Ferreira ◽  
...  

Human pressure on the water resources provided by natural isolated wetlands has intensified in Brazil due to an increase in agricultural land equipped with irrigation. However, the amount of water stored in these areas and its contribution to aquifer recharge is unknown. This study aimed to quantify the amount of water that can be retained in a natural wetland and to propose a model of groundwater recharge. We used remote sensing techniques involving unmanned aerial vehicle to map the wetland and highlight its internal morphology, using a red–green–blue orthomosaic and a digital surface model. The 2-D inversion and a pseudo-3-D model from electrical resistivity tomography data were used to visualize the subsurface structures and hydrologic flow paths. The wetland is a reservoir storing up to 416.996 m3 of water during the rainy months. Distinct internal compartments characterize the wetland topography and different water-volume storage, lower in the border and higher in the center. A leakage point connects surface water to groundwater through direct vertical flow, which constitutes the aquifer recharge zone. Remotely sensed very high-resolution images allied with geophysical techniques allowed complete surface and subsurface imaging and offered visual tools that contributed to understanding the hydrodynamics of the wetland.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


10.14311/754 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
P. Kaňovský ◽  
L. Smrcek ◽  
C. Goodchild

The study described in this paper deals with the issue of a design tool for the autopilot of an Unmanned Aerial Vehicle (UAV) and the selection of the airdata and inertial system sensors. This project was processed in cooperation with VTUL a PVO o.z. [1]. The feature that distinguishes the autopilot requirements of a UAV (Figs. 1, 7, 8) from the flight systems of conventional manned aircraft is the paradox of controlling a high bandwidth dynamical system using sensors that are in harmony with the low cost low weight objectives that UAV designs are often expected to achieve. The principal function of the autopilot is flight stability, which establishes the UAV as a stable airborne platform that can operate at a precisely defined height. The main sensor for providing this height information is a barometric altimeter. The solution to the UAV autopilot design was realised with simulations using the facilities of Matlab® and in particular Simulink®[2]. 


Sign in / Sign up

Export Citation Format

Share Document