scholarly journals Analysis of small RNA changes in different Brassica napus synthetic allopolyploids

Author(s):  
Yunxiao Wei ◽  
Fei Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for solving the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective of small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7621
Author(s):  
Yunxiao Wei ◽  
Fei Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for explaining the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective between small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.


2019 ◽  
Author(s):  
Yunxiao Wei ◽  
Fei Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for solving the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective of small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


2021 ◽  
Vol 22 (18) ◽  
pp. 10154
Author(s):  
Tengfei Shen ◽  
Mengxuan Xu ◽  
Haoran Qi ◽  
Yuanheng Feng ◽  
Zhangqi Yang ◽  
...  

Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 160-160
Author(s):  
Ahmad Faisal Karim ◽  
Anthony R. Soltis ◽  
Nadia P Ewing ◽  
Clifton L. Dalgard ◽  
Matthew D. Wilkerson ◽  
...  

The formation of pathological anti-FVIII antibodies, referred to as "inhibitors", is the most serious complication of therapeutic FVIII infusions, affecting up to one third of severe Hemophilia A (HA) patients. Intensive FVIII therapy, i.e. "Immune Tolerance Induction" (ITI), enables ~2/3 of treated patients to achieve peripheral tolerance to FVIII. FVIII inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development versus immune tolerance, achieved with or without ITI therapy, are not well understood. To address these questions, we carried out temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) from HA subjects with and without a current or historic inhibitor using RNA-seq. PBMCs were isolated from 40 subjects in the following groups: (A) HA with an inhibitor that resolved either following ITI or spontaneously; (B) HA with a current inhibitor; (C) HA with no inhibitor history and (D) non-HA healthy controls. PBMCs were rested overnight and then stimulated with 5 nM FVIII, and total RNA was isolated 4, 16, 24 and 48 hours following stimulation. RNA from unstimulated cells at t = 4 hrs served as a negative control. Time-series differential expression analysis was performed with DESeq2 and genes with a log likelihood ratio test FDR <0.05 and an absolute fold change >1.25 at at least one stimulation time point compared to control were deemed significant. Subjects with a resolved past inhibitor (Group A) showed differential expression of only 15 genes. In contrast, subjects with a current inhibitor (Group B) showed differential expression of 56 genes. A clustering analysis divided the temporal trajectories of Group B genes into 3 distinct clusters. Twenty-three genes were up-regulated at 16 hr and 21 genes at 48 hr post-stimulation, respectively. Interestingly, gene ontology (GO) enrichment analysis of these genes revealed enrichments for innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A and COLEC12.NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1beta and TNF-alpha, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. Expression levels of NLRP3, TLR8, CLEC10A and IL32 transcripts were validated by real time PCR, and changes in RNA transcript abundances correlated well with the RNA-seq results. IL-32 results were validated by both RT-qPCR on an aliquot of the original RNA sample and ELISA to measure the cytokine in supernatants at t=48 hrs. HA subjects with no inhibitor history (Group C) had 195 differentially expressed genes whose temporal profiles fell into 4 distinct clusters. GO enrichment analysis revealed biological processes related to epithelial cell proliferation, responses to toxic substances, and positive/negative regulation of cytokine secretion (TNF, NQO1, PMEPA1). The non-HA healthy control subjects (Group D) also showed cellular responses to ex vivo FVIII stimulation. A total of 63 differentially regulated genes fell into 4 distinct clusters. GO analysis identified expression patterns associated with leukocyte-mediated immunity, T-cell activation, and a hypoxia response. Overall, distinct transcriptional signatures were identified for each of the four groups, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. We are currently characterizing PBMC immune cell subsets, e.g. macrophages and CD4+ T cells, to identify specific cell types responsible for the differentially regulated genes. Cellular responses of tolerized HA subjects and healthy non-HA controls were consistent with the known immunogenicity of FVIII, including persistence of FVIII-specific CD4+ T cells even in individuals with no measurable FVIII inhibitor. The inflammatory status of HA patients suffering from an ongoing inhibitor clearly includes up-regulation of innate immune modulators, some of which may act as ongoing danger signals that influence the responses to, and eventual outcome of, ITI therapy. Disclosures Pratt: Grifols, Inc: Research Funding; Bloodworks NW: Patents & Royalties: inventor on patents related to FVIII immunogenicity.


2019 ◽  
Vol 20 (12) ◽  
pp. 2966 ◽  
Author(s):  
Weiying Zeng ◽  
Zudong Sun ◽  
Zhenguang Lai ◽  
Shouzhen Yang ◽  
Huaizhu Chen ◽  
...  

Soybean is one of the most important oil crops in the world. Bean pyralid is a major leaf-feeding insect of soybean. In order to screen out the functional genes and regulatory pathways related to the resistance for bean pyralid larvae, the small RNA and transcriptome sequencing were performed based on the highly resistant material (Gantai-2-2) and highly susceptible material (Wan 82-178) of soybean. The results showed that, when comparing 48 h feeding with 0 h feeding, 55 differentially expressed miRNAs were identified in Gantai-2-2 and 58 differentially expressed miRNAs were identified in Wan82-178. When comparing Gantai-2-2 with Wan82-178, 77 differentially expressed miRNAs were identified at 0 h feeding, and 70 differentially expressed miRNAs were identified at 48 h feeding. The pathway analysis of the predicted target genes revealed that the plant hormone signal transduction, RNA transport, protein processing in the endoplasmic reticulum, zeatin biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and isoquinoline alkaloid biosynthesis may play important roles in soybean’s defense against the stress caused by bean pyralid larvae. According to conjoint analysis of the miRNA/mRNA, a total of 20 differentially expressed miRNAs were negatively correlated with 26 differentially expressed target genes. The qRT-PCR analysis verified that the small RNA sequencing results were credible. According to the analyses of the differentially expressed miRNAs, we speculated that miRNAs are more likely to play key roles in the resistance to insects. Gma-miR156q, Gma-miR166u, Gma-miR166b, Gma-miR166j-3p, Gma-miR319d, Gma-miR394a-3p, Gma-miR396e, and so on—as well as their negatively regulated differentially expressed target genes—may be involved in the regulation of soybean resistance to bean pyralid larvae. These results laid a foundation for further in-depth research regarding the action mechanisms of insect resistance.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2917
Author(s):  
Qiaoxin Wang ◽  
Xiaohui Li ◽  
Hang Sha ◽  
Xiangzhong Luo ◽  
Guiwei Zou ◽  
...  

Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA is a kind of endogenous non-coding single-stranded small RNA, which is involved in cell development, and immune response and gene expression regulation. In this study, silver carp were kept in the closed containers for hypoxia treatment by spontaneous oxygen consumption. The samples of heart, brain, liver and gill were collected, and the total RNAs extracted separately from the four tissues were mixed in equal amounts according to the concentration. Afterwards, the RNA pool was constructed for high-throughput sequencing, and based on the small RNA sequencing, the differentially expressed microRNAs were identified. Furthermore, their target gene prediction and enrichment analyses were carried out. The results showed that a total of 229 known miRNAs and 391 putative novel miRNAs were identified, which provided valuable resources for further study on the regulatory mechanism of miRNAs in silver carp under hypoxia stress. The authors verified 16 differentially expressed miRNAs by qRT-PCR, and the results were consistent with small RNA sequencing (sRNA-seq). The predicted target genes number of differentially expressed miRNAs was 25,146. GO and KEGG functional enrichment analysis showed that these target genes were mainly involved in the adaption of hypoxia stress in silver carp through biological regulation, catalytic activity and apoptosis. This study provides references for further study of interaction between miRNAs and target genes, and the basic data for the response mechanism under hypoxia stress in silver carp.


Epigenomics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 825-842 ◽  
Author(s):  
Sirui Huang ◽  
Zhenlin Tang ◽  
Yuheng Wang ◽  
Danliang Chen ◽  
Jinhua Li ◽  
...  

Aim: To assess differential expression profiles of miRNAs in exosomes derived from human peripheral blood (PB) and umbilical cord blood (UCB). Materials & methods: Small RNA sequencing was performed to characterize the miRNA expression in plasma exosomes processed from UCB of five healthy newborns and PB of five normal adult volunteers, and differentially expressed miRNAs were further analyzed. Results: A total of 65 exosomal miRNAs, including 46 upregulated and 19 downregulated, showed differential expression between UCB and PB. Target genes of these miRNAs were mainly enriched in signaling pathways associated with pregnancy, cancers, cell mobility and nervous system. Conclusion: Exosomal miRNAs may have essential roles in the biological functions of UCB, suggesting the therapeutic and biomarker potentials of exosomes in UCB.


2020 ◽  
Author(s):  
Mohammed Sayed ◽  
Juw Won Park

AbstractMicroRNAs are small non-coding RNAs that are known for their role in post-transcriptional regulation of target genes. Typically, their functions are predicted by first identifying their target genes and then finding biological processes enriched in these targets. Current tools for miRNA functional analysis use only genes with physical binding sites as their targets and exclude other genes that are indirectly targeted transcriptionally through transcription factors. Here, we introduce a method to predict gene ontology (GO) annotations indirectly targeted by microRNAs. The proposed method resulted in better performance in predicting known miRNA-GO term associations compared to the canonical approach. To facilitate miRNA GO enrichment analysis, we developed an R Shiny application, miRinGO, that is freely available from GitHub at https://github.com/Fadeel/miRinGO


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 282
Author(s):  
Alshabi ◽  
BasavarajVastrad ◽  
Shaikh ◽  
Vastrad

: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes—miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes—miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.


Sign in / Sign up

Export Citation Format

Share Document