scholarly journals Tissue-specific evaluation of suitable reference genes for RT-qPCR in the pond snail, Lymnaea stagnalis

Author(s):  
Alexander P Young ◽  
Carmen F Landry ◽  
Daniel J Jackson ◽  
Russell C Wyeth

Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression across multiple tissues. To obtain reliable results, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging target for qPCR experimentation. However, no systematic assessment of reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from a variety of tissues in L. stagnalis. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (ACTB), beta-tubulin (TUBB), ubiquitin (UBI), prenylated rab acceptor protein 1 (Rapac1), and a voltage gated potassium channel (VGKC). These genes exhibited a wide range of expression levels among tissues. The stability of each of the genes was consistent when measured by any of the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper and RefFinder. Our data indicate that GAPDH and EF1α are highly stable in the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle) as well as in pooled analyses. We do not recommend VGKC for use in RT-qPCR experiments due to its relatively low expression stability. Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we suggest GAPDH and EF1α are a strong option for multi-tissue analyses of RT-qPCR data in Lymnaea stagnalis.

2019 ◽  
Author(s):  
Alexander P Young ◽  
Carmen F Landry ◽  
Daniel J Jackson ◽  
Russell C Wyeth

Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression across multiple tissues. To obtain reliable results, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging target for qPCR experimentation. However, no systematic assessment of reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from a variety of tissues in L. stagnalis. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (ACTB), beta-tubulin (TUBB), ubiquitin (UBI), prenylated rab acceptor protein 1 (Rapac1), and a voltage gated potassium channel (VGKC). These genes exhibited a wide range of expression levels among tissues. The stability of each of the genes was consistent when measured by any of the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper and RefFinder. Our data indicate that GAPDH and EF1α are highly stable in the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle) as well as in pooled analyses. We do not recommend VGKC for use in RT-qPCR experiments due to its relatively low expression stability. Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we suggest GAPDH and EF1α are a strong option for multi-tissue analyses of RT-qPCR data in Lymnaea stagnalis.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7888
Author(s):  
Alexander P. Young ◽  
Carmen F. Landry ◽  
Daniel J. Jackson ◽  
Russell C. Wyeth

Reverse transcription quantitative PCR (RT-qPCR) is a robust technique for the quantification and comparison of gene expression. To obtain reliable results with this method, one or more reference genes must be employed to normalize expression measurements among treatments or tissue samples. Candidate reference genes must be validated to ensure that they are stable prior to use in qPCR experiments. The pond snail (Lymnaea stagnalis) is a common research organism, particularly in the areas of learning and memory, and is an emerging model for the study of biological asymmetry, biomineralization, and evolution and development. However, no systematic assessment of qPCR reference genes has been performed in this animal. Therefore, the aim of our research was to identify stable reference genes to normalize gene expression data from several commonly studied tissues in L. stagnalis as well as across the entire body. We evaluated a panel of seven reference genes across six different tissues in L. stagnalis with RT-qPCR. The genes included: elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase, beta-actin, beta-tubulin, ubiquitin, prenylated rab acceptor protein 1, and a voltage gated potassium channel. These genes exhibited a wide range of expression levels among tissues. The tissue-specific stability of each of the genes was consistent when measured by the standard stability assessment algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. Our data indicate that the most stable reference genes vary among the tissues that we examined (central nervous system, tentacles, lips, penis, foot, mantle). Our results were generally congruent with those obtained from similar studies in other molluscs. Given that a minimum of two reference genes are recommended for data normalization, we provide suggestions for strong pairs of reference genes for single- and multi-tissue analyses of RT-qPCR data in L. stagnalis.


2018 ◽  
Author(s):  
Cao Ai Ping ◽  
Shao Dong Nan ◽  
Cui Bai Ming ◽  
Zheng Yin Ying ◽  
Sun jie

Analysis of gene expression level by RNA sequencing (RNA-seq ) has a wide range of biological purposes in various species. Real-time fluorescent quantitative PCR (qRT-PCR) evaluated gene expression levels and validated transcriptomic, which will depend on the stably expressed reference genes for normalization of the gene expression level under specific situations. In this study, 15 candidate genes were selected from transcriptome datasets during somatic embryogenesis (SE) initial dedifferentiation in Gossypium hirsutum L. of different SE capability. To evaluate the stability of those genes, geNorm, NormFinder and BestKeeper were used. The results revealed that ENDO4 and 18srRNA could be as appropriate reference genes under all conditions. The stability and reliability of the reference genes were further tested through comparison of qRT-PCR results and RNA-seq data, as well as evaluation of the expression profiles of auxin-responsive protein (AUX22) and ethylene-responsive transcription factor (ERF17). In summary, the results of our study indicate the most suitable reference genes for qRT-PCR during three induction stages in four cotton species.


2018 ◽  
Author(s):  
Cao Ai Ping ◽  
Shao Dong Nan ◽  
Cui Bai Ming ◽  
Zheng Yin Ying ◽  
Sun jie

Analysis of gene expression level by RNA sequencing (RNA-seq ) has a wide range of biological purposes in various species. Real-time fluorescent quantitative PCR (qRT-PCR) evaluated gene expression levels and validated transcriptomic, which will depend on the stably expressed reference genes for normalization of the gene expression level under specific situations. In this study, 15 candidate genes were selected from transcriptome datasets during somatic embryogenesis (SE) initial dedifferentiation in Gossypium hirsutum L. of different SE capability. To evaluate the stability of those genes, geNorm, NormFinder and BestKeeper were used. The results revealed that ENDO4 and 18srRNA could be as appropriate reference genes under all conditions. The stability and reliability of the reference genes were further tested through comparison of qRT-PCR results and RNA-seq data, as well as evaluation of the expression profiles of auxin-responsive protein (AUX22) and ethylene-responsive transcription factor (ERF17). In summary, the results of our study indicate the most suitable reference genes for qRT-PCR during three induction stages in four cotton species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


2018 ◽  
Vol 20 (1) ◽  
pp. 34 ◽  
Author(s):  
Jing-Jing Wang ◽  
Shuo Han ◽  
Weilun Yin ◽  
Xinli Xia ◽  
Chao Liu

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes for normalizing target gene expression is important for verifying expression changes. Metasequoia is a high-quality and economically important wood species. However, few systematic studies have examined reference genes in Metasequoia. Here, the expression stability of 14 candidate reference genes in different tissues and following different hormone treatments were analyzed using six algorithms. Candidate reference genes were used to normalize the expression pattern of FLOWERING LOCUS T and pyrabactin resistance-like 8. Analysis using the GrayNorm algorithm showed that ACT2 (Actin 2), HIS (histone superfamily protein H3) and TATA (TATA binding protein) were stably expressed in different tissues. ACT2, EF1α (elongation factor-1 alpha) and HIS were optimal for leaves treated with the flowering induction hormone solution, while Cpn60β (60-kDa chaperonin β-subunit), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HIS were the best reference genes for treated buds. EF1α, HIS and TATA were useful reference genes for accurate normalization in abscisic acid-response signaling. Our results emphasize the importance of validating reference genes for qRT-PCR analysis in Metasequoia. To avoid errors, suitable reference genes should be used for different tissues and hormone treatments to increase normalization accuracy. Our study provides a foundation for reference gene normalization when analyzing gene expression in Metasequoia.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chun-Sun Gu ◽  
Liang-qin Liu ◽  
Chen Xu ◽  
Yan-hai Zhao ◽  
Xu-dong Zhu ◽  
...  

Quantitative real time PCR (RT-qPCR) has emerged as an accurate and sensitive method to measure the gene expression. However, obtaining reliable result depends on the selection of reference genes which normalize differences among samples. In this study, we assessed the expression stability of seven reference genes, namely, ubiquitin-protein ligase UBC9 (UBC), tubulin alpha-5 (TUBLIN), eukaryotic translation initiation factor (EIF-5A), translation elongation factor EF1A (EF1α), translation elongation factor EF1B (EF1b), actin11 (ACTIN), and histone H3 (HIS), inIris. lacteavar.chinensis(I. lacteavar.chinensis) root when the plants were subjected to cadmium (Cd), lead (Pb), and salt stress conditions. All seven reference genes showed a relatively wide range of threshold cycles (Ct) values in different samples. GeNorm and NormFinder algorithms were used to assess the suitable reference genes. The results from the two software units showed thatEIF-5AandUBCwere the most stable reference genes across all of the tested samples, whileTUBLINwas unsuitable as internal controls.I. lacteavar.chinensisis tolerant to Cd, Pb, and salt. Our results will benefit future research on gene expression in response to the three abiotic stresses.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Chuyang Shao ◽  
Hongbo Shao

Kosteletzkya virginica(L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene inK. virginicawhich showed stable expression profiles under our experimental conditions. The candidate reference genes were 18S ribosomal RNA (18SrRNA),β-actin (ACT),α-tubulin (TUA), and elongation factor (EF). We tracked the gene expression profiles of the candidate genes and analyzed their stabilities through BestKeeper, geNorm, and NormFinder software programs. The results of the three programs were identical and18SrRNAwas assessed to be the most stable reference gene in this study. However,TUAwas identified to be the most unstable. Our study proved again that the traditional reference genes indeed displayed a certain degree of variations under given experimental conditions. Importantly, our research also provides guidance for selecting most suitable reference genes and lays the foundation for further studies inK. virginica.


2018 ◽  
Vol 109 (4) ◽  
pp. 443-452 ◽  
Author(s):  
C. Wang ◽  
J. Yang ◽  
Q. Pan ◽  
S. Yu ◽  
R. Luo ◽  
...  

AbstractA stable reference gene is a key prerequisite for accurate assessment of gene expression. At present, the real-time reverse transcriptase quantitative polymerase chain reaction has been widely used in the analysis of gene expression in a variety of organisms.Neoseiulus barkeriHughes (Acari: Phytoseiidae) is a major predator of mites on many important economically crops. Until now, however, there are no reports evaluating the stability of reference genes in this species. In view of this, we used GeNorm, NormFinder, BestKeeper, and RefFinder software tools to evaluate the expression stability of 11 candidate reference genes in developmental stages and under various abiotic stresses. According to our results, β-ACTandHsp40were the top two stable reference genes in developmental stages. TheHsp60andHsp90were the most stable reference genes in various acaricides stress. For alterations in temperature,Hsp40and α-TUBwere the most suitable reference genes. About UV stress,EF1α and α-TUBwere the best choice, and for the different prey stress, β-ACTand α-TUBwere best suited. In normal conditions, the β-ACT and α-TUB were the two of the highest stable reference genes to respond to all kinds of stresses. The current study provided a valuable foundation for the further analysis of gene expression inN. barkeri.


Sign in / Sign up

Export Citation Format

Share Document