scholarly journals Epistasis analysis reveals associations between gene variants and bipolar disorder

Author(s):  
Carlo Maj ◽  
Elena Milanesi ◽  
Massimo Gennarelli ◽  
Luciano Milanesi ◽  
ivan Merelli

In complex phenotypes (e.g., psychiatric diseases) single locus tests, commonly performed with Genome-Wide Association Studies, have proven to be limited in discovering strong gene associations. A growing body of evidence suggests that epistatic non-linear effects may be responsible for complex phenotypes arising from the interaction of different biological factors. A major issue in epistasis analysis is the computational burden due to the huge number of statistical tests to be performed when considering all the potential genotype combinations. In this work, we developed a computational efficient pipeline to investigate the presence of epistasis at a genome-wide scale in bipolar disorder, which is a typical example of complex phenotype with a relevant but unexplained genetic background. By running our pipeline we were able to identify 13 epistasis interactions between variants located in genes potentially involved in biological processes associated with the analyzed phenotype.

2017 ◽  
Author(s):  
Carlo Maj ◽  
Elena Milanesi ◽  
Massimo Gennarelli ◽  
Luciano Milanesi ◽  
ivan Merelli

In complex phenotypes (e.g., psychiatric diseases) single locus tests, commonly performed with Genome-Wide Association Studies, have proven to be limited in discovering strong gene associations. A growing body of evidence suggests that epistatic non-linear effects may be responsible for complex phenotypes arising from the interaction of different biological factors. A major issue in epistasis analysis is the computational burden due to the huge number of statistical tests to be performed when considering all the potential genotype combinations. In this work, we developed a computational efficient pipeline to investigate the presence of epistasis at a genome-wide scale in bipolar disorder, which is a typical example of complex phenotype with a relevant but unexplained genetic background. By running our pipeline we were able to identify 13 epistasis interactions between variants located in genes potentially involved in biological processes associated with the analyzed phenotype.


2019 ◽  
Author(s):  
Rounak Dey ◽  
Seunggeun Lee

AbstractIn genome-wide association studies (GWASs), genotype log-odds ratios (LORs) quantify the effects of the variants on the binary phenotypes, and calculating the genotype LORs for all of the markers is required for several downstream analyses. Calculating genotype LORs at a genome-wide scale is computationally challenging, especially when analyzing large-scale biobank data, which involves performing thousands of GWASs phenome-wide. Since most of the binary phenotypes in biobank-based studies have unbalanced (case : control = 1 : 10) or often extremely unbalanced (case : control = 1 : 100) case-control ratios, the existing methods cannot provide a scalable and accurate way to estimate the genotype LORs. The traditional logistic regression provides biased LOR estimates in such situations. Although the Firth bias correction method can provide unbiased LOR estimates, it is not scalable for genome-wide or phenome-wide scale association analyses typically used in biobank-based studies, especially when the number of non-genetic covariates is large. On the other hand, the saddlepoint approximation-based test (fastSPA), which can provide accurate p values and is scalable to analyse large-scale biobank data, does not provide the genotype LOR estimates as it is a score-based test. Here, we propose a scalable method based on score statistics, to accurately estimate the genotype LORs, adjusting for non-genetic covariates. Comparing to the Firth method, our proposed method reduces the computational complexity from O(nK2 + K3) to O(n), where n is the sample-size, and K is the number of non-genetic covariates. Our method is ~ 10x faster than the Firth method when 15 covariates are being adjusted for. Through extensive numerical simulations, we show that the proposed method is both scalable and accurate in estimating the genotype ORs in genome-wide or phenome-wide scale.


2016 ◽  
Author(s):  
Sara L. Pulit ◽  
Sera A.J. de With ◽  
Paul I.W. de Bakker

AbstractGenome-wide association studies (GWAS) of common disease have been hugely successful in implicating loci that modify disease risk. The bulk of these associations have proven robust and reproducible, in part due to community adoption of statistical criteria for claiming significant genotype-phenotype associations. Currently, studies of common disease are rapidly shifting towards the use of sequencing technologies. As the cost of sequencing drops, assembling large samples in global populations is becoming increasingly feasible. Sequencing studies interrogate not only common variants, as was true for genotyping-based GWAS, but variation across the full allele frequency spectrum, yielding many more (independent) statistical tests. We sought to empirically determine genome-wide significance for various analysis scenarios. Using whole-genome sequence data, we simulated sequencing-based disease studies of varying sample size and ancestry. We determined that future sequencing efforts in >2,000 samples should practically employ a genome-wide significance threshold of of p <5 ×10−9, though the threshold does vary with ancestry. Studies of European or East Asian ancestry should set genome-wide significance at approximately p <5×10−9, but similar studies of African or South Asian samples should be more stringent (p <1×10−9). Because sequencing analysis brings with it many challenges (especially for rare variants), appropriate adoption of a revised multiple test correction will be crucial to avoid irreproducible claims of association.


2021 ◽  
Vol 14 (4) ◽  
pp. 287
Author(s):  
Courtney M. Vecera ◽  
Gabriel R. Fries ◽  
Lokesh R. Shahani ◽  
Jair C. Soares ◽  
Rodrigo Machado-Vieira

Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.


2015 ◽  
Author(s):  
Dominic Holland ◽  
Yunpeng Wang ◽  
Wesley K Thompson ◽  
Andrew Schork ◽  
Chi-Hua Chen ◽  
...  

Genome-wide Association Studies (GWAS) result in millions of summary statistics (``z-scores'') for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric disorders, which are understood to have substantial genetic components that arise from very large numbers of SNPs. The complexity of the datasets, however, poses a significant challenge to maximizing their utility. This is reflected in a need for better understanding the landscape of z-scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities that does not require raw genotype data, relying only on summary statistics from GWAS substudies, and a scheme allowing for direct empirical validation. We show that modeling z-scores as a mixture of Gaussians is conceptually appropriate, in particular taking into account ubiquitous non-null effects that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The four-parameter model allows for estimating the degree of polygenicity of the phenotype -- the proportion of SNPs (after uniform pruning, so that large LD blocks are not over-represented) likely to be in strong LD with causal/mechanistically associated SNPs -- and predicting the proportion of chip heritability explainable by genome wide significant SNPs in future studies with larger sample sizes. We apply the model to recent GWAS of schizophrenia (N=82,315) and additionally, for purposes of illustration, putamen volume (N=12,596), with approximately 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We estimate the degree to which effect sizes are over-estimated when based on linear regression association coefficients. We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001, while the respective sample sizes required to approach fully explaining the chip heritability are 106and 105. The model can be extended to incorporate prior knowledge such as pleiotropy and SNP annotation. The current findings suggest that the model is applicable to a broad array of complex phenotypes and will enhance understanding of their genetic architectures.


2019 ◽  
Vol 22 (8) ◽  
pp. 1063-1069 ◽  
Author(s):  
N. S. Yudin ◽  
N. L. Podkolodnyy ◽  
T. A. Agarkova ◽  
E. V. Ignatieva

Selection by means of genetic markers is a promising approach to the eradication of infectious diseases in farm animals, especially in the absence of effective methods of treatment and prevention. Bovine leukemia virus (BLV) is spread throughout the world and represents one of the biggest problems for the livestock production and food security in Russia. However, recent genome-wide association studies have shown that sensitivity/resistance to BLV is polygenic. The aim of this study was to create a catalog of cattle genes and genes of other mammalian species involved in the pathogenesis of BLV-induced infection and to perform gene prioritization using bioinformatics methods. Based on manually collected information from a range of open sources, a total of 446 genes were included in the catalog of cattle genes and genes of other mammals involved in the pathogenesis of BLV-induced infection. The following criteria were used to prioritize 446 genes from the catalog: (1) the gene is associated with leukemia according to a genome-wide association study; (2) the gene is associated with leukemia according to a case-control study; (3) the role of the gene in leukemia development has been studied using knockout mice; (4) protein-protein interactions exist between the gene-encoded protein and either viral particles or individual viral proteins; (5) the gene is annotated with Gene Ontology terms that are overrepresented for a given list of genes; (6) the gene participates in biological pathways from the KEGG or REACTOME databases, which are over-represented for a given list of genes; (7) the protein encoded by the gene has a high number of protein-protein interactions with proteins encoded by other genes from the catalog. Based on each criterion, a rank was assigned to each gene. Then the ranks were summarized and an overall rank was determined. Prioritization of 446 candidate genes allowed us to identify 5 genes of interest (TNF,LTB,BOLA-DQA1,BOLA-DRB3,ATF2), which can affect the sensitivity/resistance of cattle to leukemia.


2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


2021 ◽  
pp. ASN.2020111599
Author(s):  
Zhi Yu ◽  
Jin Jin ◽  
Adrienne Tin ◽  
Anna Köttgen ◽  
Bing Yu ◽  
...  

Background: Genome-wide association studies (GWAS) have revealed numerous loci for kidney function (estimated glomerular filtration rate, eGFR). The relationship of polygenic predictors of eGFR, risk of incident adverse kidney outcomes, and the plasma proteome is not known. Methods: We developed a genome-wide polygenic risk score (PRS) for eGFR by applying the LDpred algorithm to summary statistics generated from a multiethnic meta-analysis of CKDGen Consortium GWAS (N=765,348) and UK Biobank GWAS (90% of the cohort; N=451,508), followed by best parameter selection using the remaining 10% of UK Biobank (N=45,158). We then tested the association of the PRS in the Atherosclerosis Risk in Communities (ARIC) study (N=8,866) with incident chronic kidney disease, kidney failure, and acute kidney injury. We also examined associations between the PRS and 4,877 plasma proteins measured at at middle age and older adulthood and evaluated mediation of PRS associations by eGFR. Results: The developed PRS showed significant associations with all outcomes with hazard ratios (95% CI) per 1 SD lower PRS ranged from 1.06 (1.01, 1.11) to 1.33 (1.28, 1.37). The PRS was significantly associated with 132 proteins at both time points. The strongest associations were with cystatin-C, collagen alpha-1(XV) chain, and desmocollin-2. Most proteins were higher at lower kidney function, except for 5 proteins including testican-2. Most correlations of the genetic PRS with proteins were mediated by eGFR. Conclusions: A PRS for eGFR is now sufficiently strong to capture risk for a spectrum of incident kidney diseases and broadly influences the plasma proteome, primarily mediated by eGFR.


Sign in / Sign up

Export Citation Format

Share Document