scholarly journals A Gene Set Enrichment Analysis of multiomic celiac disease data

Author(s):  
Eugenio Del Prete ◽  
Angelo Facchiano ◽  
Pietro Liò

Celiac disease is a chronic condition, which can be described as inflammatory and autoimmune. The well-known treatment is a lifelong gluten-free diet, but it can be not totally effective for a high percentage of the patients. The aim of this work is to approach the celiac disease complexity from a bioinformatics point of view. The idea is to analyse the state of the art from GEO online repository and revisit the works, by integrating gene expression data and Gene Ontology (GO) terms. Gene Set Enrichment Analysis (GSEA) is a set of statistical methods to classify genes in groups, which are related to common biological function, chromosomal location or regulation. The work is developed in R environment. The packages are downloaded by the online repository Bioconductor. The studies are not standardized. In these circumstances, the candidate genes subset is chosen with a trade-off among all the scores, thus the creation of a GO graph eludes the Fishers exact test, keeping its biological importance to define process clusters. A little framework on the biological processes involved in each study on celiac disease is suggested: GSE11501, peptidyl-tyrosine phosphorylation, phosphatidylinositol 3-kinase signaling, and response to endoplasmic reticulum stress; GSE87629, mitosis regulation, microtubule cytoskeleton organisation, and protein destabilization; GSE72625, signaling pathway and cellular response about interferon-gamma; GSE61849a, immune response and immune system development; GSE61849b, protein phosphorylation, apoptotic process, and regulation of cell adhesion; GSE76168, cytokine mediate signaling pathways.

2017 ◽  
Author(s):  
Eugenio Del Prete ◽  
Angelo Facchiano ◽  
Pietro Liò

Celiac disease is a chronic condition, which can be described as inflammatory and autoimmune. The well-known treatment is a lifelong gluten-free diet, but it can be not totally effective for a high percentage of the patients. The aim of this work is to approach the celiac disease complexity from a bioinformatics point of view. The idea is to analyse the state of the art from GEO online repository and revisit the works, by integrating gene expression data and Gene Ontology (GO) terms. Gene Set Enrichment Analysis (GSEA) is a set of statistical methods to classify genes in groups, which are related to common biological function, chromosomal location or regulation. The work is developed in R environment. The packages are downloaded by the online repository Bioconductor. The studies are not standardized. In these circumstances, the candidate genes subset is chosen with a trade-off among all the scores, thus the creation of a GO graph eludes the Fishers exact test, keeping its biological importance to define process clusters. A little framework on the biological processes involved in each study on celiac disease is suggested: GSE11501, peptidyl-tyrosine phosphorylation, phosphatidylinositol 3-kinase signaling, and response to endoplasmic reticulum stress; GSE87629, mitosis regulation, microtubule cytoskeleton organisation, and protein destabilization; GSE72625, signaling pathway and cellular response about interferon-gamma; GSE61849a, immune response and immune system development; GSE61849b, protein phosphorylation, apoptotic process, and regulation of cell adhesion; GSE76168, cytokine mediate signaling pathways.


2020 ◽  
Author(s):  
Chen Xu ◽  
Ling-bing Meng ◽  
Yu Xiao ◽  
Yong Qiu ◽  
Ying-jue Du ◽  
...  

Abstract Background Osteoarthritis (OA) is a chronic, progressive, inflammatory, degenerative disease, which has become an osteoarthropathy that seriously affects physical health and quality of life of elderly people. However, the etiology and pathogenesis of OA remains unclear. Therefore, the study purposed to utilize bioinformatics technology to perform identification and functional enrichment analysis of differentially expressed genes in osteoarthritis. Method The main methods of this study consist of access to microarray data (GSE82107 and GSE55235), identification of differently expressed genes (DEGs) by GEO2R between OA and normal synovium samples, enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) by Gene Set Enrichment Analysis (GSEA), construction and analysis of protein-protein interaction (PPI) network, significant module and hub genes. Result A total of 300 DEGs were identified, consisting of 64 up-regulated genes and 11 down-regulated genes in OA samples compared to normal synovium tissues. Gene set enrichment analysis of DEGs provided a comprehensive overview of some major pathophysiological mechanisms in OA: cellular response to hydrogen peroxide, P53 signaling pathway and so on. The study also built the PPI network, and a total of 10 key genes were identified: CYR61, PENK, GOLM1, DUSP1, ATF3, STC2, FOSB, PRSS23, TF, and TNC. Conclusion DEGs exists between OA patients and normal cartilage tissue, which may be involved in the related mechanism of OA development, especially cellular response to hydrogen peroxide and CYR61.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandra Zito ◽  
Marta Lualdi ◽  
Paola Granata ◽  
Dario Cocciadiferro ◽  
Antonio Novelli ◽  
...  

Gene set enrichment analysis (GSEA) is a powerful tool to associate a disease phenotype to a group of genes/proteins. GSEA attributes a specific weight to each gene/protein in the input list that depends on a metric of choice, which is usually represented by quantitative expression data. However, expression data are not always available. Here, GSEA based on betweenness centrality of a protein–protein interaction (PPI) network is described and applied to two cases, where an expression metric is missing. First, personalized PPI networks were generated from genes displaying alterations (assessed by array comparative genomic hybridization and whole exome sequencing) in four probands bearing a 16p13.11 microdeletion in common and several other point variants. Patients showed disease phenotypes linked to neurodevelopment. All networks were assembled around a cluster of first interactors of altered genes with high betweenness centrality. All four clusters included genes known to be involved in neurodevelopmental disorders with different centrality. Moreover, the GSEA results pointed out to the evidence of “cell cycle” among enriched pathways. Second, a large interaction network obtained by merging proteomics studies on three neurodegenerative disorders was analyzed from the topological point of view. We observed that most central proteins are often linked to Parkinson’s disease. The selection of these proteins improved the specificity of GSEA, with “Metabolism of amino acids and derivatives” and “Cellular response to stress or external stimuli” as top-ranked enriched pathways. In conclusion, betweenness centrality revealed to be a suitable metric for GSEA. Thus, centrality-based GSEA represents an opportunity for precision medicine and network medicine.


2019 ◽  
Vol 8 (10) ◽  
pp. 1580 ◽  
Author(s):  
Kyoung Min Moon ◽  
Kyueng-Whan Min ◽  
Mi-Hye Kim ◽  
Dong-Hoon Kim ◽  
Byoung Kwan Son ◽  
...  

Ninety percent of patients with scrub typhus (SC) with vasculitis-like syndrome recover after mild symptoms; however, 10% can suffer serious complications, such as acute respiratory failure (ARF) and admission to the intensive care unit (ICU). Predictors for the progression of SC have not yet been established, and conventional scoring systems for ICU patients are insufficient to predict severity. We aimed to identify simple and robust indicators to predict aggressive behaviors of SC. We evaluated 91 patients with SC and 81 non-SC patients who were admitted to the ICU, and 32 cases from the public functional genomics data repository for gene expression analysis. We analyzed the relationships between several predictors and clinicopathological characteristics in patients with SC. We performed gene set enrichment analysis (GSEA) to identify SC-specific gene sets. The acid-base imbalance (ABI), measured 24 h before serious complications, was higher in patients with SC than in non-SC patients. A high ABI was associated with an increased incidence of ARF, leading to mechanical ventilation and worse survival. GSEA revealed that SC correlated to gene sets reflecting inflammation/apoptotic response and airway inflammation. ABI can be used to indicate ARF in patients with SC and assist with early detection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mike Fang ◽  
Brian Richardson ◽  
Cheryl M. Cameron ◽  
Jean-Eudes Dazard ◽  
Mark J. Cameron

Abstract Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.


2011 ◽  
Vol 10 (4) ◽  
pp. 3856-3887 ◽  
Author(s):  
Q.Y. Ning ◽  
J.Z. Wu ◽  
N. Zang ◽  
J. Liang ◽  
Y.L. Hu ◽  
...  

2021 ◽  
Author(s):  
Chuan-Qi Xu ◽  
Kui-Sheng Yang ◽  
Shu-Xian Zhao ◽  
Jian Lv

Abstract Objective: Pancreatic cancer (PC) is one of the most malignant tumors. Cytosolic DNA sensing have been found to play an essential role in tumor. In this study, a cytosolic DNA sensing-related genes (CDSRGs) signature was constructed and the potential mechanisms also been discussed.Methods: The RNA expression and clinical data of PC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Subsequently, univariate (UCR) and multivariate Cox regression (MCR) analyses were conducted to establish a prognostic model in the TCGA patients, which was verified by GEO patients. Cancer immune infiltrates were investigated via single sample gene set enrichment analysis (ssGSEA) and Tumor Immune Estimation Resource (TIMER). Finally, Gene Set Enrichment Analysis (GSEA) was used to investigate the related signaling pathways.Results: A prognostic model comprising four genes (POLR2E,IL18, MAVS, and FADD) was established. The survival rate of patients in the low-risk group was significantly higher than that of patients in the high-risk group. In addition, CDSRGs-risk score was proved as an independent prognostic factor in PC. Immune infiltrates and drug sensitivity are associated with POLR2E,IL18, MAVS, and FADD expression.Conclusions: In summary, we present and validated a CDSRGs risk model that is an independent prognostic factor and indicates the immune characteristics of PC. This prognostic model may facilitate the personalized treatment and monitoring.


2021 ◽  
Vol 4 (5) ◽  
pp. e201900332
Author(s):  
Elena A Afanasyeva ◽  
Moritz Gartlgruber ◽  
Tatsiana Ryl ◽  
Bieke Decaesteker ◽  
Geertrui Denecker ◽  
...  

The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin–GEF1–suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin–GEF1–suppressed ADRN-type cells are a batch of AU-rich element–containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis–based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin–GEF1–suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang-Jie Wu ◽  
Ai-Tao Nai ◽  
Gui-Cheng He ◽  
Fei Xiao ◽  
Zhi-Min Li ◽  
...  

Abstract Background Dihydropyrimidinase like 2 (DPYSL2) has been linked to tumor metastasis. However, the function of DPSY2L in lung adenocarcinoma (LUAD) is yet to be explored. Methods Herein, we assessed DPYSL2 expression in various tumor types via online databases such as Oncomine and Tumor Immune Estimation Resource (TIMER). Further, we verified the low protein and mRNA expressions of DPYSL2 in LUAD via the ULCAN, The TCGA and GEPIA databases. We applied the ROC curve to examine the role of DPYSL2 in diagnosis. The prognostic significance of DPYSL2 was established through the Kaplan–Meier plotter and the Cox analyses (univariate and multivariate). TIMER was used to explore DPYSL2 expression and its connection to immune infiltrated cells. Through Gene Set Enrichment Analysis, the possible mechanism of DPYSL2 in LUAD was investigated. Results In this study, database analysis revealed lower DPYSL2 expression in LUAD than in normal tissues. The ROC curve suggested that expression of DPYSL2 had high diagnostic efficiency in LUAD. The DPYSL2 expression had an association with the survival time of LUAD patients in the Kaplan–Meier plotter and the Cox analyses. The results from TIMER depicted a markedly positive correlation of DPYSL2 expression with immune cells infiltrated in LUAD, such as macrophages, dendritic cells, CD4+ T cells, and neutrophils. Additionally, many gene markers for the immune system had similar positive correlations in the TIMER analysis. In Gene Set Enrichment Analysis, six immune-related signaling pathways were associated with DPYSL2. Conclusions In summary, DPYSL2 is a novel biomarker with diagnostic and prognostic potential for LUAD as well as an immunotherapy target. Highlights Expression of DPYSL2 was considerably lower in LUAD than in normal tissues. Investigation of multiple databases showed a high diagnostic value of DPYSL2 in LUAD. DPYSL2 can independently predict the LUAD outcomes. Immune-related mechanisms may be potential ways for DPYSL2 to play a role in LUAD.


Sign in / Sign up

Export Citation Format

Share Document