scholarly journals Application of network diffusion approaches to drug screenings: A perspective on multilayered networks derived from cell lines and drugs

Author(s):  
Vigneshwari Subramanian ◽  
Bence Szalai ◽  
Luis Tobalina ◽  
Julio Saez-Rodriguez

Network diffusion approaches are frequently used for identifying the relevant disease genes and for prioritizing the genes for drug sensitivity predictions. Majority of these studies rely on networks representing a single type of information. However, using multiplex heterogeneous networks (networks with multiple interconnected layers) is much more informative and helps to understand the global topology. We built a multi-layered network that incorporates information on protein-protein interactions, drug-drug similarities, cell line-cell line similarities and co-expressed genes. We applied Random Walk with Restart algorithm to investigate the interactions between drugs, targets and cancer cell lines. Results of ANOVA models show that these prioritized genes are among the most significant ones that relate to drug response. Moreover, the predictive power of the drug response prediction models built using the gene expression data of only the top ranked genes is similar to the models built using all the available genes. Taken together, the results confirm that the multiplex heterogeneous network-based approach is efficient in identifying the most significant genes associated with drug response.

2017 ◽  
Author(s):  
Vigneshwari Subramanian ◽  
Bence Szalai ◽  
Luis Tobalina ◽  
Julio Saez-Rodriguez

Network diffusion approaches are frequently used for identifying the relevant disease genes and for prioritizing the genes for drug sensitivity predictions. Majority of these studies rely on networks representing a single type of information. However, using multiplex heterogeneous networks (networks with multiple interconnected layers) is much more informative and helps to understand the global topology. We built a multi-layered network that incorporates information on protein-protein interactions, drug-drug similarities, cell line-cell line similarities and co-expressed genes. We applied Random Walk with Restart algorithm to investigate the interactions between drugs, targets and cancer cell lines. Results of ANOVA models show that these prioritized genes are among the most significant ones that relate to drug response. Moreover, the predictive power of the drug response prediction models built using the gene expression data of only the top ranked genes is similar to the models built using all the available genes. Taken together, the results confirm that the multiplex heterogeneous network-based approach is efficient in identifying the most significant genes associated with drug response.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 844
Author(s):  
Abhishek Majumdar ◽  
Yueze Liu ◽  
Yaoqin Lu ◽  
Shaofeng Wu ◽  
Lijun Cheng

Background: Cancer cell lines are frequently used in research as in-vitro tumor models. Genomic data and large-scale drug screening have accelerated the right drug selection for cancer patients. Accuracy in drug response prediction is crucial for success. Due to data-type diversity and big data volume, few methods can integrative and efficiently find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data to predict drug response in precision medicine. Method: A novelty k-means Ensemble Support Vector Regression (kESVR) is developed to predict each drug response values for single patient based on cell-line gene expression data. The kESVR is a blend of supervised and unsupervised learning methods and is entirely data driven. It utilizes embedded clustering (Principal Component Analysis and k-means clustering) and local regression (Support Vector Regression) to predict drug response and obtain the global pattern while overcoming missing data and outliers’ noise. Results: We compared the efficiency and accuracy of kESVR to 4 standard machine learning regression models: (1) simple linear regression, (2) support vector regression (3) random forest (quantile regression forest) and (4) back propagation neural network. Our results, which based on drug response across 610 cancer cells from Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP v2), proved to have the highest accuracy (smallest mean squared error (MSE) measure). We next compared kESVR with existing 17 drug response prediction models based a varied range of methods such as regression, Bayesian inference, matrix factorization and deep learning. After ranking the 18 models based on their accuracy of prediction, kESVR ranks first (best performing) in majority (74%) of the time. As for the remaining (26%) cases, kESVR still ranked in the top five performing models. Conclusion: In this paper we introduce a novel model (kESVR) for drug response prediction using high dimensional cell-line gene expression data. This model outperforms current existing prediction models in terms of prediction accuracy and speed and overcomes overfitting. This can be used in future to develop a robust drug response prediction system for cancer patients using the cancer cell-lines guidance and multi-omics data.


Author(s):  
Delora Baptista ◽  
Pedro G Ferreira ◽  
Miguel Rocha

Abstract Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:[email protected]


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shujun Huang ◽  
Pingzhao Hu ◽  
Ted M. Lakowski

Abstract Background Predicting patient drug response based on a patient’s molecular profile is one of the key goals of precision medicine in breast cancer (BC). Multiple drug response prediction models have been developed to address this problem. However, most of them were developed to make sensitivity predictions for multiple single drugs within cell lines from various cancer types instead of a single cancer type, do not take into account drug properties, and have not been validated in cancer patient-derived data. Among the multi-omics data, gene expression profiles have been shown to be the most informative data for drug response prediction. However, these models were often developed with individual genes. Therefore, this study aimed to develop a drug response prediction model for BC using multiple data types from both cell lines and drugs. Methods We first collected the baseline gene expression profiles of 49 BC cell lines along with IC50 values for 220 drugs tested in these cell lines from Genomics of Drug Sensitivity in Cancer (GDSC). Using these data, we developed a multiple-layer cell line-drug response network (ML-CDN2) by integrating a one-layer cell line similarity network based on the pathway activity profiles and a three-layer drug similarity network based on the drug structures, targets, and pan-cancer IC50 profiles. We further used ML-CDN2 to predict the drug response for new BC cell lines or patient-derived samples. Results ML-CDN2 demonstrated a good predictive performance, with the Pearson correlation coefficient between the observed and predicted IC50 values for all GDSC cell line-drug pairs of 0.873. Also, ML-CDN2 showed a good performance when used to predict drug response in new BC cell lines from the Cancer Cell Line Encyclopedia (CCLE), with a Pearson correlation coefficient of 0.718. Moreover, we found that the cell line-derived ML-CDN2 model could be applied to predict drug response in the BC patient-derived samples from The Cancer Genome Atlas (TCGA). Conclusions The ML-CDN2 model was built to predict BC drug response using comprehensive information from both cell lines and drugs. Compared with existing methods, it has the potential to predict the drug response for BC patient-derived samples.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yongsoo Kim ◽  
Tycho Bismeijer ◽  
Wilbert Zwart ◽  
Lodewyk F. A. Wessels ◽  
Daniel J. Vis

Abstract Integrative analyses that summarize and link molecular data to treatment sensitivity are crucial to capture the biological complexity which is essential to further precision medicine. We introduce Weighted Orthogonal Nonnegative parallel factor analysis (WON-PARAFAC), a data integration method that identifies sparse and interpretable factors. WON-PARAFAC summarizes the GDSC1000 cell line compendium in 130 factors. We interpret the factors based on their association with recurrent molecular alterations, pathway enrichment, cancer type, and drug-response. Crucially, the cell line derived factors capture the majority of the relevant biological variation in Patient-Derived Xenograft (PDX) models, strongly suggesting our factors capture invariant and generalizable aspects of cancer biology. Furthermore, drug response in cell lines is better and more consistently translated to PDXs using factor-based predictors as compared to raw feature-based predictors. WON-PARAFAC efficiently summarizes and integrates multiway high-dimensional genomic data and enhances translatability of drug response prediction from cell lines to patient-derived xenografts.


2015 ◽  
Author(s):  
Cheng Zhao ◽  
Ying Li ◽  
Zhaleh Safikhani ◽  
Benjamin Haibe-Kains ◽  
Anna Goldenberg

Recent advances in high-throughput technologies have facilitated the profiling of large panels of cancer cell lines with responses measured for thousands of drugs. The computational challenge is now to realize the potential of these data in predicting patients responses to these drugs in the clinic. We address this issue by examining the spectrum of prediction models of patient response: models predicting directly from cell lines, those predicting directly from patients, and those trained on cell lines and patients at the same time. We tested 21 classification models on four drugs (bortezomib, erlotinib, docetaxel and epirubicin) for which clinical trial data were available. Our integrative models consistently outperform cell line-based predictors, indicating that there are limitations to the predictive potential of in vitro data alone. Furthermore, these integrative models achieve better predictive accuracy and require substantially fewer patients than would be the case if only patient data were available. Altogether our results support the relevance of preclinical data for therapy prediction in clinical trials, enabling more efficient and cost-effective trial design.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fatemeh Ahmadi Moughari ◽  
Changiz Eslahchi

AbstractOne of the prominent challenges in precision medicine is to select the most appropriate treatment strategy for each patient based on the personalized information. The availability of massive data about drugs and cell lines facilitates the possibility of proposing efficient computational models for predicting anticancer drug response. In this study, we propose ADRML, a model for Anticancer Drug Response Prediction using Manifold Learning to systematically integrate the cell line information with the drug information to make accurate predictions about drug therapeutic. The proposed model maps the drug response matrix into the lower-rank spaces that lead to obtaining new perspectives about cell lines and drugs. The drug response for a new cell line-drug pair is computed using the low-rank features. The evaluation of ADRML performance on various types of cell lines and drug information, in addition to the comparisons with previously proposed methods, shows that ADRML provides accurate and robust predictions. Further investigations about the association between drug response and pathway activity scores reveal that the predicted drug responses can shed light on the underlying drug mechanism. Also, the case studies suggest that the predictions of ADRML about novel cell line-drug pairs are validated by reliable pieces of evidence from the literature. Consequently, the evaluations verify that ADRML can be used in accurately predicting and imputing the anticancer drug response.


2021 ◽  
Author(s):  
David Earl Hostallero ◽  
Yihui Li ◽  
Amin Emad

Motivation: The increasing number of publicly available databases containing drugs' chemical structures, their response in cell lines, and molecular profiles of the cell lines has garnered attention to the problem of drug response prediction. However, many existing methods do not fully leverage the information that is shared among cell lines and drugs with similar structure. As such, drug similarities in terms of cell line responses and chemical structures could prove to be useful in forming drug representations to improve drug response prediction accuracy. Results: We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response prediction. Our models take advantage of the drugs' chemical structure and the underlying relationships of drugs and cell lines through a bipartite graph and a heterogenous graph convolutional network that incorporate sensitive and resistant cell line information in forming drug representations. Evaluation of our methods and other state-of-the-art models in different scenarios show that incorporating this bipartite graph significantly improve the prediction performance. Additionally, genes that contribute significantly to the performance of our models also point to important biological processes and signaling pathways.


2020 ◽  
Author(s):  
Tuan Nguyen ◽  
Thin Nguyen ◽  
Duc-Hau Le

AbstractBackgroundDrug response prediction is an important problem in computational personalized medicine. Many machine learning-, especially deep learning-, based methods have been proposed for this task. However, these methods often represented the drugs as strings, which are not a natural way to depict molecules. Also, interpretation has not been considered thoroughly in these methods.MethodsIn this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs are represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines are depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines are learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair is predicted by a fully-connected neural network. Four variants of graph convolutional networks are used for learning the features of drugs.ResultsWe find that GraphDRP outperforms tCNN in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discover the contribution of the genomic aberrations to the responses.ConclusionRepresenting drugs as graphs are able to improve the performance of drug response prediction. Data and source code can be downloaded at https://github.com/hauldhut/GraphDRP.


Sign in / Sign up

Export Citation Format

Share Document