scholarly journals Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

Author(s):  
Heather Paxton ◽  
Peter G Tickle ◽  
Jeffery W Rankin ◽  
Jonathan R Codd ◽  
John R Hutchinson

In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogenyinfluence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. Wholelimb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for ventilation (heavier sterna apparatus must be moved with each breath) and locomotion (potentially greater limb muscle stresses during standing andmoving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion, as well as breathing.

Author(s):  
Heather Paxton ◽  
Peter G Tickle ◽  
Jeffery W Rankin ◽  
Jonathan R Codd ◽  
John R Hutchinson

In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogenyinfluence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. Wholelimb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for ventilation (heavier sterna apparatus must be moved with each breath) and locomotion (potentially greater limb muscle stresses during standing andmoving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion, as well as breathing.


2003 ◽  
Vol 77 (2) ◽  
pp. 235-245 ◽  
Author(s):  
C.T. Whittemore ◽  
D.M. Green ◽  
J.D. Wood ◽  
A.V. Fisher ◽  
C.P. Schofield

AbstractA total of 74 pigs representing three commercially available crossbred types, Landrace (50%), Pietrain (50%) and Meishan (25%), were given food ad libitum over a 25- to 115-kg growth period and serially slaughtered for physical and chemical analysis in five groups at 32, 42, 63, 82 and 114 kg live weight (W). Results are presented in the order of pig type as above. Pig types grew at similar overall rates of live body gain, but the Meishan type ate more food and had greater back fat depth. The Pietrain type was least fat. Dissected fatty tissue grew substantially faster than the carcass as a whole; allometric exponents being 1·64, 1·34 and 1·52 (P < 0·05) for the Landrace, Pietrain and Meishan types respectively. Dissected lean tissue gains were 0·419, 0·427 and 0·308 kg daily (P < 0·01), and dissected fatty tissue gains were 0·251, 0·158 and 0·218 kg daily (P < 0·05); the Meishan type being slowest for lean gain and the Pietrain type slowest for fatty tissue gain. The Pietrain type had the largest cross-sectional area of the longissimus dorsi muscle, and the Meishan type the smallest. The pelvic limb of the Meishan type lost density (as measured by specific gravity) fastest, and that of the Pietrain slowest as the pigs grew. The Meishan type had a lower proportion of its carcass lean and a higher proportion of its carcass fat in the pelvic limb than did the other two types. For each kg of live-weight gain, 0·037, 0·041 and 0·032 kg (P < 0·05) of chemical protein was deposited in the pelvic limb of the three types respectively. Equivalent values for chemical lipid were 0·041, 0·035 and 0·041 (P < 0·05). The Meishan type retained protein at a relatively slower rate in the pelvic limb than in the body as a whole. The Pietrain type had the greatest ultimate protein mass in the pelvic limb. Estimation of whole body protein content as a linear function of pig live weight gives coefficients of 0·154, 0·178 and 0·168 kg (P < 0·05) for the three types respectively. Equivalent values for whole body lipid content were 0·269, 0·214 and 0·274 (P < 0·05). Best estimates of the daily rates of protein retention in the body of the whole live pig were 0·152, 0·197 and 0·142 kg/day for the Landrace, Pietrain and Meishan types respectively.


PeerJ ◽  
2014 ◽  
Vol 2 ◽  
pp. e473 ◽  
Author(s):  
Heather Paxton ◽  
Peter G. Tickle ◽  
Jeffery W. Rankin ◽  
Jonathan R. Codd ◽  
John R. Hutchinson

2020 ◽  
Author(s):  
H Kertesz ◽  
T Beyer ◽  
T Traub-Weidinger ◽  
J Cal-Gonzalez ◽  
M Hacker ◽  
...  
Keyword(s):  

Author(s):  
Amandine Bouguetoch ◽  
Alain Martin ◽  
Sidney Grosprêtre

Abstract Introduction Training stimuli that partially activate the neuromuscular system, such as motor imagery (MI) or neuromuscular electrical stimulation (NMES), have been previously shown as efficient tools to induce strength gains. Here the efficacy of MI, NMES or NMES + MI trainings has been compared. Methods Thirty-seven participants were enrolled in a training program of ten sessions in 2 weeks targeting plantar flexor muscles, distributed in four groups: MI, NMES, NMES + MI and control. Each group underwent forty contractions in each session, NMES + MI group doing 20 contractions of each modality. Before and after, the neuromuscular function was tested through the recording of maximal voluntary contraction (MVC), but also electrophysiological and mechanical responses associated with electrical nerve stimulation. Muscle architecture was assessed by ultrasonography. Results MVC increased by 11.3 ± 3.5% in NMES group, by 13.8 ± 5.6% in MI, while unchanged for NMES + MI and control. During MVC, a significant increase in V-wave without associated changes in superimposed H-reflex has been observed for NMES and MI, suggesting that neural adaptations occurred at supraspinal level. Rest spinal excitability was increased in the MI group while decreased in the NMES group. No change in muscle architecture (pennation angle, fascicle length) has been found in any group but muscular peak twitch and soleus maximal M-wave increased in the NMES group only. Conclusion Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.


2011 ◽  
Vol 8 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Henry C. Astley ◽  
Thomas J. Roberts

Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.


2018 ◽  
Vol 46 (21_suppl) ◽  
pp. 38-47 ◽  
Author(s):  
Wei Hai Deng ◽  
Per Morten Fredriksen

Aims: The objective was to investigate moderate-to-vigorous physical activity levels (MVPA) of primary school children at baseline of the Health Oriented Pedagogical Project (HOPP), Norway. Methods: Data on 2123 children aged 6–12 years were included for analysis (75% participation rate). Average minutes per day in MVPA was objectively measured using accelerometry based on seven-day averages. The sample was analysed for age-, sex-, socioeconomic-, and season-related patterns. A linear regression investigated the moderating effect of these factors as well as body mass index and waist circumference. Results: Some 86.5% of the sample had at least 60 min/day MVPA, averaging 90.7 min/day. The main differences in daily averages were between age groups 6½–9 and 10–12 ( p < .05). Boys (95.8 min/day, 95% CI: 94.1–97.5) were more active than girls (85.6 min/day, 95% CI: 83.9–87.2) in all age groups ( p < .0001). MVPA was lower by 3.5 min ( p < .0001) per additional year of age in the linear regression (R2 = 0.176) and was reduced by 20 min less per day in MVPA in the winter months compared with the summer months ( p < .0001). Conclusions: Physical activity levels are already in decline from 6–7 years old and are likely to continue to decline into adolescence. Interventions must therefore focus on primary school children.


Sign in / Sign up

Export Citation Format

Share Document