scholarly journals Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement

2020 ◽  
Vol 31 (4) ◽  
pp. 395-403
Author(s):  
SUNG KIM ◽  
SANG-BUM MA ◽  
YOUNG-SEOK CHOI ◽  
JIN-HYUK KIM
2021 ◽  
Author(s):  
Teymour Javaherchi ◽  
Susheel Brahmeshwarkar ◽  
Raja Faruq ◽  
Chinmay Deshpande

Abstract This work will demonstrate how the Energy Recovery Inc. (ERI) engineering team improved the efficiency of a multistage pump by about 10% at the first stage, which translated into a 3% increase in the overall multistage pump efficiency; according to a set of engineering calculations and review of the archived in-house test data for the legacy multistage pumps, it was hypothesized that the performance pain-point of the pump was inefficient performance of the first stage, due to the formation of a strong pre-swirl right before its inlet. The validity of this hypothesis then was confirmed via RANS CFD simulations of the flow field inside the inlet suction housing and pump impeller. Same CFD methodology was used to evaluate multiple engineering solutions to reduce the strength of the inflow pre-swirl by modifying the inlet suction housing geometry. The obtained RANS CFD solutions guided the engineering team towards the most promising hardware modification proposal. The proposed geometrical modification of the inlet suction housing was implemented and tested on different multistage pumps. All of the test results validated the obtained RANS CFD numerical solution. The state of the art in this successful performance improvement process was first the on-point hypothesis development based on fundamentals of engineering and archived test data. Second, the proper RANS CFD methodology development to model/confirm the initial hypothesis and vet all possible engineering solutions to maximize the multistage pump efficiently and accurately. This can be a great example for various relevant turbomachinery industrial applications.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000054-000058 ◽  
Author(s):  
Goran Radosavljević ◽  
Andrea Marić ◽  
Walter Smetana ◽  
Ljiljana Živanov

This paper presents for the first time a parallel comparison of the performance of RF inductors realized on different substrate configurations. Presented inductors are meander type structures fabricated in Low Temperature Co-fired Ceramic (LTCC) technology. Also, chosen material is never before implemented for inductor fabrication. The performance improvement is achieved by design optimization of different substrate configurations that incorporate placement of an air-gap beneath the inductor and/or introduction of an additional shielding layer on the top. Designed structures are characterized on the basis of simulation and experimental data, achieving good correlation between obtained results. Presented results show over 30 % increase in quality factor and widening of the operating frequency range by over 55 %.


2012 ◽  
Vol 15 (3) ◽  
pp. 39-45 ◽  
Author(s):  
Kwon-Bum Pyun ◽  
Joon-Hyung Kim ◽  
Young-Seok Choi ◽  
Joon-Yong Yoon

Author(s):  
Jeong-Min Jin ◽  
Hyo-Geun Ji ◽  
Youn-Jea Kim

Abstract Recently, many studies carried out to improve the performance of the pump with shape changes. In this paper, impeller optimization is performed to improve the pump performance. Design optimization techniques for the sludge pump impellers have been developed by using computational fluid dynamics (CFD) and optimal design theory. This paper describes the design optimization of a sludge pump impeller based on Response Surface Method (RSM) coupled with Navier-Stokes flow analysis. In particular, RSM which was based on the results of the design of experiment (DOE) helps to achieve the optimum point. In order to optimize the shape of the impeller, the thickness and the height of the blade were set as design factors. As a result, it was confirmed that the efficiency and the head were improved by 11.2% and 6.67%, respectively, compared to the referenced model.


Sign in / Sign up

Export Citation Format

Share Document