Optimal Design for Impeller of a Sludge Pump Using Design of Experiment

Author(s):  
Jeong-Min Jin ◽  
Hyo-Geun Ji ◽  
Youn-Jea Kim

Abstract Recently, many studies carried out to improve the performance of the pump with shape changes. In this paper, impeller optimization is performed to improve the pump performance. Design optimization techniques for the sludge pump impellers have been developed by using computational fluid dynamics (CFD) and optimal design theory. This paper describes the design optimization of a sludge pump impeller based on Response Surface Method (RSM) coupled with Navier-Stokes flow analysis. In particular, RSM which was based on the results of the design of experiment (DOE) helps to achieve the optimum point. In order to optimize the shape of the impeller, the thickness and the height of the blade were set as design factors. As a result, it was confirmed that the efficiency and the head were improved by 11.2% and 6.67%, respectively, compared to the referenced model.

Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Author(s):  
C-S Ahn ◽  
K-Y Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method (RSM) and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin—Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal i design, and a linear programming method was used to optimize the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


2004 ◽  
Vol 127 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Han-Ting Chen ◽  
Po-Li Chen ◽  
Jenn-Tsong Horng ◽  
Ying-Huei Hung

An effective method for performing the thermal optimization of fully confined pin-fin heat sinks under constraints of pressure drop, mass, and space limitations has been successfully developed. This study shows how automated design optimization techniques can be successfully applied to optimal design of pin-fin heat sinks, which allows the thermal engineer to meet several design objectives and constraints simultaneously. The thermal and hydrodynamic models for pin-fin heat sinks have been developed. A statistical method for sensitivity analysis of the design factors, including the size of heat source and sink footprint, conductivity of sink base, fin material, fin pitch, fin diameter, fin height, thickness of sink base, and upstream mass flowrate, is performed to determine the key factors that are critical to the design. A response surface methodology is then applied to establish regression models for the thermal resistance and pressure drop in terms of the design factors with an experimental design. By employing the gradient-based numerical optimization technique, a series of constrained optimal designs can be efficiently performed. Comparisons between these predicted optimal designs and those evaluated by the theoretical calculations and numerical simulations are made with satisfactory agreements.


1997 ◽  
Vol 3 (3) ◽  
pp. 153-161 ◽  
Author(s):  
Steven M. Miner

A commercial CFD code is used to compute the flow field within the first stage impeller of a two stage axial flow pump. The code solves the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system using a standardk−εturbulence model. Stage design parameters are, rotational speed 870 rpm, flow coefficientφ=0.12, head coefficientψ=0.06, and specific speed 2.86 (8070 US). Results from the study include relative and absolute velocities, flow angles, and static and total pressures. Comparison is made to measured data available for the same impeller at two planes, one upstream of the impeller and the other downstream. The comparisons are for circumferentially averaged results and include axial and tangential velocities, impeller exit flow angle, static pressure, and total pressure. Results of this study show that the computational results closely match the shapes and magnitudes of the measured profiles, indicating that CFD can be used to accurately predict performance.


2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Haowei Zhang ◽  
Miko Lin Lv ◽  
Junyan Yang ◽  
Wenxin Niu ◽  
James Chung-Wai Cheung ◽  
...  

Purpose: Evaluation of the internal biomechanics of the foot-and-ankle complex is challenging for the prescription of orthosis particularly for midfoot arthritis patients in which the joint condition is crucial. Methods: Using computational modeling and design optimization techniques, the objective of this study was to compare the biomechanical functions among different combinations of design factors using computer simulation. A finite element foot model was reconstructed from a midfoot arthritis patient. Orthotic designs with 3 levels for each of the 3 design factors (arch height, lateral wedge angle, and insole stiffness) contributed to 9 configurations using a fractional factorial design were tested. Results: An increase in peak plantar stress of the midfoot was facilitated by a medium arch height and wedge angle, and stiffest insole material, notwithstanding the combination neither reduced the peak plantar stress of other foot regions nor was consistent with the combination that minimized the stress of the articular cartilage. Conclusions: Insole with high arch (H = 30 mm), low stiffness (E = 1.0 MPa), and medium wedge angle (A = 5°) could minimize the stress of the cartilage at the arthritic joint (primary outcome) and could be beneficial to the patients. Also, insole stiffness predominantly influenced cartilage stress. However, secondary outcomes including the stress of the navicular and medial cuneiform and the regional plantar stress did not produce the same solution. Future studies can consider a patient-specific loading profile to further the investigation on the stabilizing effect and the attenuation of load transfer induced by the insole.


Author(s):  
Hironobu Yamakawa ◽  
Taku Iwase ◽  
Shigehisa Funabashi ◽  
Kouichi Sakamoto ◽  
Yutaka Enokizu ◽  
...  

We developed a high-efficiency propeller fan to reduce electric power consumption of the fan motor for outdoor heatpump units, and we developed a designing tool combining computational fluid dynamics (CFD) with multi-objective optimization techniques based on the genetic algorithm (GA). In CFD, a numerical model is calculated using commercial software based on steady state, Reynolds-averaged Navier-Stokes (RANS) and k-ε turbulent flow model. The objective functions are fan efficiency and fan noise for optimization. Fan efficiency is calculated directly from the CFD results, and fan noise is calculated using an aerodynamic noise prediction model using the relative inlet and outlet velocities of the fan blades from the CFD results. We fabricated a high-efficiency propeller fan characterized with curled trailing edge tips from Pareto optimal solutions. The experimental results from the performance of the fan showed the developed fan was more efficient than conventional fan.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amir Javidinejad

Concepts of precision engineering design process for optimal design where engineering sciences contribute in the successful good design are elaborated in this paper. Scientific theory, numerical methods and practicality are discussed in this paper. Factors necessary for a complete product or systems design are detailed and application of mathematical design optimization in producing a good design are shown. Many applicable engineering design examples are itemized to show relevancy of the optimal design theory to engineering design. Future trends of optimal design with respect to the 4th industrial revolution of digitization is presented. Paper sets to elaborate that most of the engineering and scientific design problems can be optimized to a good design based on many new/advanced optimization techniques. 


Author(s):  
Luciano A. Catalano ◽  
Andrea Dadone ◽  
Vito S.E. Daloiso

This paper proposes an efficient and robust procedure for the design optimization of turbomachinery cascades in inviscid and turbulent transonic flow conditions. It employs a progressive strategy, based on the simultaneous convergence of the design process and of all iterative solutions involved (flow analysis, gradient evaluation), also including the global refinement from a coarse to a sufficiently fine mesh. Cheap, flexible and easy-to-program Multigrid-Aided Finite Differences are employed for the computation of the sensitivity derivatives. The entire approach is combined with an upwind finite-volume method for the Euler and the Navier-Stokes equations on cell-vertex unstructured (triangular) grids, and validated versus the inverse design of a turbine cascade. The methodology turns out to be robust and highly efficient, the converged design optimization being obtained in a computational time equal to that required by 15 to 20 (depending on the application) multigrid flow analyses on the finest grid.


Author(s):  
D T Pham ◽  
A Ghanbarzadeh ◽  
S Otri ◽  
E Koç

This paper describes the first application of the Bees Algorithm to mechanical design optimization. The Bees Algorithm is a search procedure inspired by the way honey bees forage for food. Two standard mechanical design problems, the design of a welded beam structure and the design of coil springs, were used to benchmark the Bees Algorithm against other optimization techniques. The paper presents the results obtained showing the robust performance of the Bees Algorithm.


2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Sign in / Sign up

Export Citation Format

Share Document