scholarly journals Antibacterial activity of an endophytic fungus Lasiodiplodia pseudotheobromae IBRL OS-64 residing in leaves of a medicinal herb, Ocimum sanctum Linn

2019 ◽  
Vol 7 (2) ◽  
pp. 35-41 ◽  
2020 ◽  
Vol 18 ◽  
Author(s):  
Mulugeta Mulat ◽  
Fazlurrahman Khan ◽  
Archana Pandita

Background: Medicinal plants have been used for treatments of various health ailments and the practices as a remedial back to thousands of years. Currently, plant-derived compounds used as alternative ways of treatment for multidrug-resistant pathogens. Objective: In the present study, various parts of six medical plants such as Solanum nigrum, Azadirachta indica, Vitex negundo, Mentha arvensis, Gloriosa superba, and Ocimum sanctum were extracted for obtaining biological active constituents. Methods: Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-well plate spectroscopic reading were used to detect the extract’s antibacterial and antibiofilm properties. Results: The obtained extracts were tested for antimicrobial and antibiofilm properties at 25 mg/mL concentrations. Maximum antibacterial activity was observed in O. sanctum chloroform extract (TUCE) against Staphylococcus aureus (24.33±1.52 mm), S. nigrum acetone extract (MAAC) against Salmonella Typhimurium (12.6 ± 1.5 mm) and Pseudomonas aeruginosa (15.0 ±2.0 mm). Only TUCE exhibited antibacterial activity at least a minimum inhibitory concentration of 0.781 mg/mL. Better antibiofilm activities were also exhibited by petroleum extracts of G. superba (KAPE) and S. nigrum (MAPE) against Escherichia coli, S. Typhimurium, P. aeruginosa and S. aureus. Moreover, S. nigrum acetone extract (MAAC) and O. sanctum chloroform extract (TUCE) were showed anti-swarming activity with a reduction of motility 56.3% against P. aeruginosa and 37.2% against S. aureus. MAAC also inhibits Las A activity (63.3% reduction) in P. aeruginosa. Conclusion: Extracts of TUCE, MAAC, MAPE, and KAPE were exhibited antibacterial and antibiofilm properties against the Gram-positive and Gram-negative pathogenic bacteria. GCMS identified chemical constituents are responsible for being biologically active.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 213
Author(s):  
Xiao-Shan Shi ◽  
Yin-Ping Song ◽  
Ling-Hong Meng ◽  
Sui-Qun Yang ◽  
Dun-Jia Wang ◽  
...  

Carotane sesquiterpenes are commonly found in plants but are infrequently reported in the fungal kingdom. Chemical investigation of Trichoderma virens QA-8, an endophytic fungus associated with the inner root tissue of the grown medicinal herb Artemisia argyi H. Lév. and Vaniot, resulted in the isolation and characterization of five new carotane sesquiterpenes trichocarotins I–M (1–5), which have diverse substitution patterns, and seven known related analogues (6–12). The structures of these compounds were established on the basis of a detailed interpretation of their NMR and mass spectroscopic data, and the structures including the relative and absolute configurations of compounds 1–3, 5, 9, and 10 were confirmed by X-ray crystallographic analysis. In the antibacterial assays, all isolates exhibited potent activity against Escherichia coli EMBLC-1, with MIC values ranging from 0.5 to 32 µg/mL, while 7β-hydroxy CAF-603 (7) strongly inhibited Micrococcus luteus QDIO-3 (MIC = 0.5 µg/mL). Structure-activity relationships of these compounds were discussed. The results from this study demonstrate that the endophytic fungus T. virens QA-8 from the planted medicinal herb A. argyi is a rich source of antibacterial carotane sesquiterpenes, and some of them might be interesting for further study to be developed as novel antibacterial agents.


Bionatura ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2187-2192
Author(s):  
Rashid Rahim Hateet ◽  
Zainab Alag Hassan ◽  
Abdulameer Abdullah Al-Mussawi ◽  
Shaima Rabeea Banoon

The present study aimed to optimize cultural conditions for optimum bioactive metabolite production by endophytic fungus Trichoderma harzianum, isolated by surface sterilization method from the leaf of the eucalyptus plant. The fungus was identified based on morphological characterization. Fungal metabolites were carried out by ethyl acetate solvent. The antibacterial activity was tested against Escherichia coli (ATCC 25922) and Staphylococcus aureus (NCTC 6571). Various carbon, nitrogen sources, pH, temperature, incubation period, and NaCl on the antibacterial metabolite production were studied. Bioactive metabolite production of T. harzianum exhibits a broad spectrum of in vitro antibacterial activity against two strains of bacteria. For the optimum production of bioactive metabolites, Dextrose and Glucose were found to be the best sources of carbon and the best sources of Nitrogen Yeast extract (YE) and (NH4)2SO. The maximum production of bioactive metabolites occurs at pH 7 and 25°C.; the NaCl showed a positive influence on bioactive metabolites.


2020 ◽  
Vol 18 (1) ◽  
pp. 36
Author(s):  
ENNY WILLIANTI ◽  
THEODORA THEODORA ◽  
WAHYUNI DYAH PARMASARI

<p><strong>ABSTRACT</strong><strong></strong></p><p><strong> </strong></p><p><strong>Background</strong>: Betel leaf contains essential oils consisting of bethelphenol, kavikol, sesquiterpenes, hydroxycavikol, cavibetol, estragol, eugenol and carvacrol. Essential oils are antibacterial due to the presence of phenol compounds and their derivatives that can denature the bacterial cell proteins. Basil leaves contain compounds from essential oils, namely 1,8-cineole, ß-bisabolene, and methyl eugenol. These three ingredients are soluble to ethanol and can cause damage to the cell membranes of the Streptococcus mutans bacteria, which are members of the normal oral flora but can turn into pathogens if the balance of normal flora is disturbed. The aim of this study was to determine the difference in the activity of the antibacterial  of decoction betel leaf (piper betle L. ) with a decoction of basil leaves (ocimum sanctum) against growth of bacteria <em>Streptococcus mutans</em> (in vitro study).</p><p><strong>M</strong><strong>ethod:</strong> this observational research with disk diffusion techniques. This study observed and measured the diameter of the inhibitory zone in MHA formed by decoction of betel leaf (piper betle L) and basil leaf (ocimum sanctum) in units of millimeters (mm). There were 2 groups with 16 replications.</p><p><strong>R</strong><strong>esults</strong>: the results of the description test showed that the antibacterial activity of the betel leaf decoction and the highest decoction of basil leaf was 17 mm and the lowest was 15 mm, but the average antibacterial value of betel leaf decoction (15,81) greater than the average value of antibacterial activity of basil leaf (15.75). This is because there are chemicals contained in betel leaf similar as contained in basil leaf, namely essential oils.</p><p><strong>Conclusion</strong>: there is no difference in the antibacterial activity of decoction  betel leaf with decoction basil leaf against growth of bacteria <em>Streptococcus mutans</em>.</p><p><strong> </strong></p><p><strong>Keywords</strong>: Betel leaf decoction, basil leaf  decoction, Streptococcus <strong>mutans.      </strong></p><p><strong> </strong></p><p><strong> </strong></p><p><strong>Abstrak</strong><strong></strong></p><p><strong> </strong></p><p><strong>Latar Belakang</strong>: Daun sirih mengandung minyak atsiri yang terdiri dari <em>bethelphenol, kavikol, </em>seskuiterpen, hydroxycavikol,cavibetol, estragol, eugenol dan carvacrol. Minyak atsiri bersifat antibakteri karena adanya senyawa phenol dan turunannya yang dapat mendenaturasi protein sel bakteri. Daun kemangi mengandung senyawa dari minyak atsiri yaitu <em>1,8-cineole</em>, <em>ß-bisabolene</em>, <em>metyl eugenol</em>. Ketiga bahan tersebut memiliki sifat larut terhadap etanol dan dapat menyebabkan kerusakan membran sel bakteri <em>streptococcus mutans</em> yang merupakan anggota flora normal rongga mulut tetapi dapat berubah menjadi patogen jika keseimbangan flora normal terganggu.Tujuan penelitian ini untuk mengetahui perbedaan aktivitas antibakteri rebusan daun sirih (<em>piper betle</em> L) dengan rebusan daun kemangi (<em>ocimum sanctum</em>) terhadap pertumbuhan bakteri <em>Streptococcus mutans</em> (penelitian in vitro).</p><p><strong>Metode</strong>: penelitian observasional ini dengan teknik difusi. Penelitian ini dilakukan dengan mengamati dan mengukur diameter zona hambat pada MHA yang dibentuk oleh rebusan daun sirih (<em>piper betle</em> L) dan daun kemangi (<em>ocimum sanctum</em>) dalam satuan milimeter (mm). Terdapat 2 kelompok dengan replikasi sebanyak 16.</p><p><strong>Hasil</strong> : Hasil uji deskripsi menunjukkan bahwa aktivitas antibakteri pada rebusan daun sirih maupun rebusan daun kemangi yang tertinggi sebesar 17 mm dan yang terendah 15 mm. Tetapi pada nilai rata-rata efektifitas antibakteri rebusan daun sirih (15,81) lebih besar daripada nilai rata-rata efektifitas antibakteri rebusan daun kemangi (15,75). Hal ini dikarenakan ada zat kimia yang terkandung dalam daun sirih mirip dengan yang terkandung dalam daun kemangi, yaitu minyak atsiri.</p><p><strong>Kesimpulan</strong> : tidak ada perbedaan aktivitas antibakteri rebusan daun sirih dengan rebusan daun kemangi terhadap pertumbuhan bakteri <em>Streptococcus </em><em>m</em><em>utans</em>.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>:  rebusan daun sirih, rebusan daun kemangi<em>, Streptococcus mutans</em>.</p><p> </p><p>     </p>


Author(s):  
Anbazhagan Sathiyaseelan ◽  
Kandasamy Saravanakumar ◽  
Arokia Vijay Anand Mariadoss ◽  
Kristine Kim ◽  
Myeong-Hyeon Wang

2006 ◽  
Vol 111 (3) ◽  
pp. 270-275 ◽  
Author(s):  
Mi-Hyang Lee ◽  
Hyun Ae Kwon ◽  
Dong-Yeul Kwon ◽  
Hyun Park ◽  
Dong-Hwan Sohn ◽  
...  

2017 ◽  
Vol 41 (5) ◽  
pp. 2055-2061 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ruby Phul ◽  
Nafeesa Khatoon ◽  
Meryam Sardar

Iron oxide nanoparticles (IONPs) were preparedviaa co-precipitation method and were then characterized and evaluated for their antibacterial activity after modification withOcimum sanctumleaf extract.


Sign in / Sign up

Export Citation Format

Share Document