Reviews and Notes: Infectious Diseases: Infectious Diseases in an Age of Change: The Impact of Human Ecology and Behavior on Disease Transmission

1996 ◽  
Vol 125 (10) ◽  
pp. 863
Author(s):  
Katharina Hauck

Economics can make immensely valuable contributions to our understanding of infectious disease transmission and the design of effective policy responses. The one unique characteristic of infectious diseases makes it also particularly complicated to analyze: the fact that it is transmitted from person to person. It explains why individuals’ behavior and externalities are a central topic for the economics of infectious diseases. Many public health interventions are built on the assumption that individuals are altruistic and consider the benefits and costs of their actions to others. This would imply that even infected individuals demand prevention, which stands in conflict with the economic theory of rational behavior. Empirical evidence is conflicting for infected individuals. For healthy individuals, evidence suggests that the demand for prevention is affected by real or perceived risk of infection. However, studies are plagued by underreporting of preventive behavior and non-random selection into testing. Some empirical studies have shown that the impact of prevention interventions could be far greater than one case prevented, resulting in significant externalities. Therefore, economic evaluations need to build on dynamic transmission models in order to correctly estimate these externalities. Future research needs are significant. Economic research needs to improve our understanding of the role of human behavior in disease transmission; support the better integration of economic and epidemiological modeling, evaluation of large-scale public health interventions with quasi-experimental methods, design of optimal subsidies for tackling the global threat of antimicrobial resistance, refocusing the research agenda toward underresearched diseases; and most importantly to assure that progress translates into saved lives on the ground by advising on effective health system strengthening.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Sultanah Alshammari ◽  
Armin Mikler

ObjectiveTo develop a computational model to assess the risk of epidemics in global mass gatherings and evaluate the impact of various measures of prevention and control of infectious diseases.IntroductionGlobal Mass gatherings (MGs) such as Olympic Games, FIFA World Cup, and Hajj (Muslim pilgrimage to Makkah), attract millions of people from different countries. The gathering of a large population in a proximity facilitates transmission of infectious diseases [1]. Attendees arrive from different geographical areas with diverse disease history and immune responses. The associated travel patterns with global events can contribute to a further disease spread affecting a large number of people within a short period and lead to a potential pandemic. Global MGs pose serious health threats and challenges to the hosting countries and home countries of the participants [2]. Advanced planning and disease surveillance systems are required to control health risks in these events. The success of computational models in different areas of public health and epidemiology motivates using these models in MGs to study transmission of infectious diseases and assess the risk of epidemics. Computational models enable simulation and analysis of different disease transmission scenarios in global MGs. Epidemic models can be used to evaluate the impact of various measures of prevention and control of infectious diseases.MethodsThe annual event of the Hajj is selected to illustrate the main aspects of the proposed model and to address the associated challenges. Every year, more than two million pilgrims from over 186 countries arrive in Makkah to perform Hajj with the majority arriving by air. Foreign pilgrims can stay at one of the holy cities of Makkah and Madinah up to 30-35 days prior the starting date of the Hajj. The long duration of the arrival phase of the Hajj allows a potential epidemic to proceed in the population of international pilgrims. Stochastic SEIR (Susceptible−Exposed−Infected−Recovered) agent-based model is developed to simulate the disease transmission among pilgrims. The agent-based model is used to simulate pilgrims and their interactions during the various phases of the Hajj. Each agent represents a pilgrim and maintains a record of demographic data (gender, country of origin, age), health data (infectivity, susceptibility, number of days being exposed or infected), event related data (location, arrival date and time), and precautionary or health-related behaviors.Each pilgrim can be either healthy but susceptible to a disease, exposed who are infected but cannot transmit the infection, or infectious (asymptomatic or symptomatic) who are infected and can transmit the disease to other susceptibles. Exposed individuals transfer to the infectious compartment after 1/α days, and infectious individuals will recover and gain immunity to that disease after 1/γ days. Where α is the latent period and γ is the infectious period. Moving susceptible individuals to exposed compartment depends on a successful disease transmission given a contact with an infectious individual. The disease transmission rate is determined by the contact rate and thetransmission probability per contact. Contact rate and mixing patterns are defined by probabilistic weights based on the features of infectious pilgrims and the duration and setting of the stage where contacts are taking place. The initial infections are seeded in the population using two scenarios (Figure 1) to measure the effects of changing, the timing for introducing a disease into the population and the likelihood that a particular flight will arrive with one or more infected individuals.ResultsThe results showed that the number of initial infections is influenced by increasing the value of λ and selecting starting date within peak arrival days. When starting from the first day, the average size of the initial infectious ranges from 0.05% to 1% of the total arriving pilgrims. Using the SEIR agent-based model, a simulation of the H1N1 Influenza epidemic was completed for the 35-days arrival stage of the Hajj. The epidemic is initiated with one infectious pilgrim per flight resulting in infected 0.5% of the total arriving pilgrims. As pilgrims spend few hours at the airport, the results obtained from running the epidemic model showed only new cases of susceptible individuals entering the exposed state in a range of 0.20% to 0.35% of total susceptibles. The number of new cases is reduced by almost the same rate of the number of infectious individuals following precautionary behaviors.ConclusionsA data-driven stochastic SEIR agent-based model is developed to simulate disease spread at global mass gatherings. The proposed model can provide initial indicators of infectious disease epidemic at these events and evaluate the possible effects of intervention measures and health-related behaviors. The proposed model can be generalized to model the spread of various diseases in different mass gatherings, as it allows different factors to vary and entered as parameters.References1. Memish ZA, Stephens GM, Steffen R, Ahmed QA. Emergence of medicine for mass gatherings: lessons from the Hajj. The Lancet infectious diseases. 2012 Jan 31;12(1):56-65.2. Chowell G, Nishiura H, Viboud C. Modeling rapidly disseminating infectious disease during mass gatherings. BMC medicine. 2012 Dec 7;10(1):159.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 598
Author(s):  
Elaine Meade ◽  
Mark Anthony Slattery ◽  
Mary Garvey

Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.


2021 ◽  
Vol 9 (F) ◽  
pp. 601-607
Author(s):  
Nor Rumaizah Mohd Nordin ◽  
Fadly Syah Arsad ◽  
Puteri Sofia Nadira Megat Kamaruddin ◽  
Muhammad Hilmi ◽  
Mohd Faizal Madrim ◽  
...  

Background   Similar to other coronaviruses, COVID-19 is transmitted mainly by droplets and is highly transmissible through close proximity or physical contact with an infected person. Countries across the globe have implemented public health control measures to prevent onwards transmission and reduce burden on health care settings. Social or physical distancing was found to be one of appropriate measure based on previous experience with epidemic and pandemic contagious diseases. This study aims to review the latest evidence of the impact of social or physical distancing implemented during COVID-19 pandemic towards COVID-19 and other related infectious disease transmission.   Methodology   The study uses PRISMA review protocol and formulation of research question was based on PICO. The selected databases include Ovid MEDLINE and Scopus. Thorough identification, screening and eligibility process were done, revealed selected 8 articles. The articles then ranked in quality through MMAT.   Results   A total of eight papers included in this analysis. Five studies (USA, Canada, South Korea and the United Kingdom) showed physical distancing had resulted in a reduction in Covid-19 transmission. In comparison, three other studies (Australia, South Korea and Finland) showed a similar decline on other infectious diseases (Human Immunodeficiency Virus (HIV), other sexually transmitted infections (STI), Influenza, Respiratory Syncytial Virus (RSV) and Vaccine-Preventive Disease (VPD). The degree of the distancing policy implemented differ between strict and lenient, with both result in effectiveness in reducing transmission of infectious disease.   Conclusion   Physical or social distancing may come in the form of extreme or lenient measure in effectively containing contagious disease like COVID-19, however the stricter the measure will give more proportionate impact towards the economy, education, mental health issues, morbidity and mortality of non-COVID-19 diseases. Since we need this measure to ensure the reduction of infectious diseases transmission in order to help flattening the curve which allow much needed time for healthcare system to prepare adequately to response, ‘Precision physical distancing” can be implemented which will have more benefit towards the survival of the community as a whole.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dina Mistry ◽  
Maria Litvinova ◽  
Ana Pastore y Piontti ◽  
Matteo Chinazzi ◽  
Laura Fumanelli ◽  
...  

AbstractMathematical and computational modeling approaches are increasingly used as quantitative tools in the analysis and forecasting of infectious disease epidemics. The growing need for realism in addressing complex public health questions is, however, calling for accurate models of the human contact patterns that govern the disease transmission processes. Here we present a data-driven approach to generate effective population-level contact matrices by using highly detailed macro (census) and micro (survey) data on key socio-demographic features. We produce age-stratified contact matrices for 35 countries, including 277 sub-national administratvie regions of 8 of those countries, covering approximately 3.5 billion people and reflecting the high degree of cultural and societal diversity of the focus countries. We use the derived contact matrices to model the spread of airborne infectious diseases and show that sub-national heterogeneities in human mixing patterns have a marked impact on epidemic indicators such as the reproduction number and overall attack rate of epidemics of the same etiology. The contact patterns derived here are made publicly available as a modeling tool to study the impact of socio-economic differences and demographic heterogeneities across populations on the epidemiology of infectious diseases.


2020 ◽  
Vol 117 (36) ◽  
pp. 22572-22579 ◽  
Author(s):  
John R. Giles ◽  
Elisabeth zu Erbach-Schoenberg ◽  
Andrew J. Tatem ◽  
Lauren Gardner ◽  
Ottar N. Bjørnstad ◽  
...  

Humans can impact the spatial transmission dynamics of infectious diseases by introducing pathogens into susceptible environments. The rate at which this occurs depends in part on human-mobility patterns. Increasingly, mobile-phone usage data are used to quantify human mobility and investigate the impact on disease dynamics. Although the number of trips between locations and the duration of those trips could both affect infectious-disease dynamics, there has been limited work to quantify and model the duration of travel in the context of disease transmission. Using mobility data inferred from mobile-phone calling records in Namibia, we calculated both the number of trips between districts and the duration of these trips from 2010 to 2014. We fit hierarchical Bayesian models to these data to describe both the mean trip number and duration. Results indicate that trip duration is positively related to trip distance, but negatively related to the destination population density. The highest volume of trips and shortest trip durations were among high-density districts, whereas trips among low-density districts had lower volume with longer duration. We also analyzed the impact of including trip duration in spatial-transmission models for a range of pathogens and introduction locations. We found that inclusion of trip duration generally delays the rate of introduction, regardless of pathogen, and that the variance and uncertainty around spatial spread increases proportionally with pathogen-generation time. These results enhance our understanding of disease-dispersal dynamics driven by human mobility, which has potential to elucidate optimal spatial and temporal scales for epidemic interventions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245787
Author(s):  
Jonatan Gomez ◽  
Jeisson Prieto ◽  
Elizabeth Leon ◽  
Arles Rodríguez

The transmission dynamics of the coronavirus—COVID-19—have challenged humankind at almost every level. Currently, research groups around the globe are trying to figure out such transmission dynamics under special conditions such as separation policies enforced by governments. Mathematical and computational models, like the compartmental model or the agent-based model, are being used for this purpose. This paper proposes an agent-based model, called INFEKTA, for simulating the transmission of infectious diseases, not only the COVID-19, under social distancing policies. INFEKTA combines the transmission dynamic of a specific disease, (according to parameters found in the literature) with demographic information (population density, age, and genre of individuals) of geopolitical regions of the real town or city under study. Agents (virtual persons) can move, according to its mobility routines and the enforced social distancing policy, on a complex network of accessible places defined over an Euclidean space representing the town or city. The transmission dynamics of the COVID-19 under different social distancing policies in Bogotá city, the capital of Colombia, is simulated using INFEKTA with one million virtual persons. A sensitivity analysis of the impact of social distancing policies indicates that it is possible to establish a ‘medium’ (i.e., close 40% of the places) social distancing policy to achieve a significant reduction in the disease transmission.


Sign in / Sign up

Export Citation Format

Share Document