scholarly journals Impact of North Atlantic Oscillation on water resources in South Western Poland

2021 ◽  
Vol 10 (4) ◽  
pp. 15-24
Author(s):  
Tomasz Olichwer ◽  
Robert Tarka ◽  
Sebastian Buczyński

The paper presents the influence of the North Atlantic Oscillation (NAO) on the water resources, especially considering groundwater discharge (baseflow) in south-western Poland. The impact of long-term changes of meteorological conditions on the water resources of this area in the 1966-2015 was determined on the basis of changes in the baseflow and total stream flow. Statistical analysis of meteorological and hydrological data showed that the runoff from the Sudeten mountain range and its foreground depends on the circulating climate factors (like the NAO). The annual NAO index best describes the variability of the average annual (12-month) total stream flow and groundwater discharge calculated from February to January and March to February, while the winter NAO index best describes the variability of the average annual (12-month) total stream flow and groundwater discharge calculated from March to February and April to March. The winter NAO index also best describes the variability of the average six-month (6-month) stream flow and groundwater discharge calculated from April to September. In the above-mentioned cases, the values of the Pearson correlation coefficient are at a high level and reach the value of -0.65.

2011 ◽  
Vol 15 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Shouraseni Sen Roy

Abstract The present study focuses on the impact of the North Atlantic Oscillation (NAO) in shaping the regional-level precipitation during the peak months of the two main rainy seasons over the Indian subcontinent. Monthly precipitation data from 1871 to 2005 were collected for 30 homogenous regions across the subcontinent. Regression analysis was used to analyze the strength of the relationship between NAO on regional-level precipitation patterns. The results of the study showed distinct spatial variations in the response of regional-level rainfall to the monthly NAO index. There were greater variations in the strength of the regression coefficients for peak monsoon rainfall (PMR) compared to the peak winter rainfall (PWR) season. During the latter half of the year, the association between PMR and the NAO index was predominantly negative. In general, the role of NAO was more pronounced across most of the regions in the peninsular India.


2005 ◽  
Vol 5 (3) ◽  
pp. 331-344 ◽  
Author(s):  
J. L. Zêzere ◽  
R. M. Trigo ◽  
I. F. Trigo

Abstract. The aim of this study is to assess the impact of the North Atlantic Oscillation (NAO) on both the winter precipitation and the temporal occurrence of different landslide types in Portugal. The analysis is applied to five sample areas located just north of Lisbon, the capital of Portugal. These sites are particularly relevant because actual dates of most of the recent landslide events are known but also because the landslides occurred in a suburban area with growing urbanization pressure. Results show that the large inter-annual variability of winter precipitation observed in western Iberia, i.e. Portugal and parts of Spain, is largely modulated by the NAO mode. In particular, precipitation falling in Portugal between November and March presents a correlation coefficient of R=–0.66 with the NAO index. Precipitation distribution for the reference rain gauge in the study area reveals that the probability of a wet month to occur is much higher for low NAO index composites than for the corresponding high NAO index composite. It is shown that this control, exerted by NAO on the precipitation regime, is related to corresponding changes in the associated activity of North-Atlantic storm tracks that affect the western Iberia. Landslide activity in the study area is related to both intense, short duration precipitation events (1–15 days) and long-lasting rainfall episodes (1–3 months). The former events trigger shallow translational slides while the later episodes are usually associated with deeper and larger slope movements. This second group of landslides is shown to be statistically associated with the 3-month average of the NAO index.


2010 ◽  
Vol 23 (6) ◽  
pp. 1291-1307 ◽  
Author(s):  
Tim Woollings ◽  
Abdel Hannachi ◽  
Brian Hoskins ◽  
Andrew Turner

Abstract The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NAO variability in the model.


2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 105 ◽  
Author(s):  
Esteban Alonso-González ◽  
Juan I. López-Moreno ◽  
Francisco M. Navarro-Serrano ◽  
Jesús Revuelto

The North Atlantic Oscillation (NAO) is considered to be the main atmospheric factor explaining the winter climate and snow evolution over much of the Northern Hemisphere. However, the absence of long-term snow data in mountain regions has prevented full assessment of the impact of the NAO at the regional scales, where data are limited. In this study, we assessed the relationship between the NAO of the winter months (DJFM-NAO) and the snowpack of the Iberian Peninsula. We simulated temperature, precipitation, and snow data for the period 1979–2014 by dynamic downscaling of ERA-Interim reanalysis data, and correlated this with the DJFM-NAO for the five main mountain ranges of the Iberian Peninsula (Cantabrian Range, Central Range, Iberian Range, the Pyrenees, and the Sierra Nevada). The results confirmed that negative DJFM-NAO values generally occur during wet and mild conditions over most of the Iberian Peninsula. Due to the direction of the wet air masses, the NAO has a large influence on snow duration and the annual peak snow water equivalent (peak SWE) in most of the mountain ranges in the study, mostly on the slopes south of the main axis of the ranges. In contrast, the impact of NAO variability is limited on north-facing slopes. Negative (positive) DJFM-NAO values were associated with longer (shorter) duration and higher (lower) peak SWEs in all mountains analyzed in the study. We found marked variability in correlations of the DJFM-NAO with snow indices within each mountain range, even when only the south-facing slopes were considered. The correlations were stronger for higher elevations in the mountain ranges, but geographical longitude also explained the intra-range variability in the majority of the studied mountains.


2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2008 ◽  
Vol 8 (3) ◽  
pp. 483-499 ◽  
Author(s):  
J. L. Zêzere ◽  
R. M. Trigo ◽  
M. Fragoso ◽  
S. C. Oliveira ◽  
R. A. C. Garcia

Abstract. Landslides occurred in the Lisbon area during the last 50 years were almost always induced by rainfall and have been used to establish rainfall thresholds for regional landslide activity. In 2006, three new rainfall-triggered landslide events occurred in the study area, namely on the 20 March, the 25–27 October, and the 28 November. Landslide events occurred in March and October 2006 include shallow translational slides and few debris flows, and the corresponding absolute antecedent rainfall was found to be above the threshold for durations ranging from 4 to 10 days. These events also fit the combined threshold of daily precipitation and 5 days calibrated antecedent rainfall values. Likewise the landslide event that took place in late November 2006 includes some slope movements with deeper slip surfaces, when compared with landslides dating from March and October. Moreover, the corresponding absolute antecedent rainfall was also found to be above the 40-day period rainfall threshold. Here we characterize in detail the short and long-term atmospheric circulation conditions that were responsible for the intense rainfall episodes that have triggered the corresponding landslide events. It is shown that the three rainfall episodes correspond to considerably different synoptic atmospheric patterns, with the March episode being associated to an intense cut-off low system while the October and November episodes appear to be related to more typical Atlantic low pressure systems (and associated fronts) travelling eastwards. Finally, we analyse the role played by the North Atlantic Oscillation (NAO) during those months marked by landslide activity. It is shown that the NAO index was consistently negative (usually associated with above average precipitation) for the months prior to the landslide events, i.e. between October 2005 and March 2006, and again between August and October 2006.


Sign in / Sign up

Export Citation Format

Share Document