scholarly journals DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD

2000 ◽  
Vol 49 (11) ◽  
pp. 2118
Author(s):  
WU QI-XUE
2004 ◽  
Vol 19 (28) ◽  
pp. 2147-2153 ◽  
Author(s):  
NAGALAKSHMI A. RAO ◽  
B. A. KAGALI

While the usual harmonic oscillator potential gives discrete energies in the nonrelativistic case, it does not however give genuine bound states in the relativistic case if the potential is treated in the usual way. In the present article, we have obtained the eigenfunctions of the Dirac oscillator in two spatial dimensions, adapting the prescription of Moshinsky.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. K. Bahar ◽  
F. Yasuk

Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.


2000 ◽  
Vol 78 (1) ◽  
pp. 9-19 ◽  
Author(s):  
M K Srivastava ◽  
R K Bhaduri ◽  
J Law ◽  
M.V.N. Murthy

We consider N fermions in a two-dimensional harmonic oscillator potential interacting with a very short-range repulsive pair-wise potential. The ground-state energy of this system is obtained by performing a Thomas-Fermi as well as a self-consistent Hartree-Fock calculation. The two results are shown to agree even for a small number of particles. We next use the finite-temperature Thomas-Fermi method to demonstrate that in the local density approximation, these interacting fermions are equivalent to a system of noninteracting particles obeying the Haldane-Wu fractional exclusion statistics. It is also shown that mapping onto a system of N noninteracting quasiparticles enables us to predict the energies of the ground and excited states of the N-body system. PACS Nos.: 05.30-d, 73.20Dx


1992 ◽  
Vol 07 (38) ◽  
pp. 3593-3600
Author(s):  
R. CHITRA

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.


1996 ◽  
Vol 11 (19) ◽  
pp. 1563-1567 ◽  
Author(s):  
BORIS F. SAMSONOV

The supersymmetric quantum mechanical model based on higher-derivative supercharge operators possessing unbroken supersymmetry and discrete energies below the vacuum state energy is described. As an example harmonic oscillator potential is considered.


Sign in / Sign up

Export Citation Format

Share Document