Energy and Civilization

Author(s):  
Vaclav Smil

Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. This book provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today’s fossil fuel-driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. This book describes humanity’s energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview.

2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2020 ◽  
Vol 28 (1) ◽  
pp. 29-33
Author(s):  
Grzegorz Ostasz ◽  
Karolina Czerwińska ◽  
Andrzej Pacana

AbstractThe publication analyses the way of managing and improving the quality of the production process of aluminum pistons for internal combustion engines. The aim of the article is to propose a method of analysis of the effectiveness of individual control methods used in the process of controlling the aluminium piston. Thanks to the location of a control point with the highest share of product non-compliance detection in the production process, it is possible to reduce quality control points by less effective points, which will contribute to lower costs or shorten the time of production processes. In view of the increasing demands on the efficiency of the checkpoints for components in internal combustion engines, the issue is important and topical.


2019 ◽  
Vol 4 (8) ◽  
pp. 80-84
Author(s):  
Van Quy Nguyen ◽  
Huu Cuong Le

To cope with the depletion of fossil fuels and the threat of exhaust pollution from internal combustion engines, research finds alternative fuels. Step by step to completely replace fossil fuels that will be exhausted in the future and environmentally friendly due to internal combustion engines is an urgent and important issue. Diversify fuel sources used for internal combustion engines and environmentally friendly when using Jatropha - Diesel fuel mixture. The paper focuses on studying the ability to use biodiesel derived from Jatropha seeds with the volume ratios of 5%, 10% and 15% on experimental engines. Thereby, it will analyze and evaluate the technical features and pollution levels of engines compared to pure fuels. Experimental study assessing the effect of Jatropha - Diesel mixing ratio on the emission formation compared with emissions in Vikyno EV2600 engines.


Author(s):  
William R. Thompson ◽  
Leila Zakhirova

In the last several upswings of the world economy, core innovations paired new engines with new fuels: steam engines with coal, internal combustion engines with petroleum, and numerous electricity-driven applications with fossil fuels. In each instance, the new fuels initially were inexpensive, abundant, and incredibly powerful but also damaging to the climate and environment. Now we need to develop engines that can run using decarbonized fuels to minimize CO2 emissions. In this chapter we shift our focus to the implications of carbon-based energy sources, system leadership, and climate change. We first review the evidence for a strong relationship between global warming and fossil fuels and then consider what might be done to forestall the consequences of such a relationship.We then relate macro-level fluctuations in world economic growth to policy responses focusing largely on electricity and transportation.


Author(s):  
Lars Seidel ◽  
Corinna Netzer ◽  
Martin Hilbig ◽  
Fabian Mauss ◽  
Christian Klauer ◽  
...  

In this work, we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment-based accuracy rating method for species profiles. The concept is used for a necessity-based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for computational fluid dynamics application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.


2016 ◽  
Vol 99 (3) ◽  
pp. 899-905
Author(s):  
Jesús Martínez Patiño ◽  
Miguel A. Hernández Figueroa ◽  
Martín Picón Núñez ◽  
Fernando Ireta Moreno ◽  
Jose Merced Lozano García

2018 ◽  
Vol 10 (10) ◽  
pp. 3438 ◽  
Author(s):  
Christos Ioakimidis ◽  
Konstantinos Genikomsakis

This paper considers the case of São Miguel in the Azores archipelago as a typical example of an isolated island with high renewable energy potential, but low baseload levels, lack of energy storage facilities, and dependence on fossil fuels that incurs high import costs. Using the Integrated MARKAL-EFOM System (TIMES), a number of scenarios are examined in order to analyze and assess the potential benefits from the implementation of a seawater pumped-storage (SPS) system, in the absence or presence of electric drive vehicles (EDVs) under a grid-to-vehicle (G2V) approach. The results obtained show that the proposed solution increases the penetration of renewable energy in the system, thus reducing the dependence on fossil fuel imports and allowing, at the same time, for the deployment of EDVs as a promising environmentally friendly alternative to conventional vehicles with internal combustion engines.


2021 ◽  
Vol 13 (16) ◽  
pp. 8797
Author(s):  
Merrylin Jayaseelan ◽  
Mohamed Usman ◽  
Adishkumar Somanathan ◽  
Sivashanmugam Palani ◽  
Gunasekaran Muniappan ◽  
...  

Human civilization will need to reduce its impacts on air and water quality and reduce its use of fossil fuels in order to advance towards a more sustainable future. Using microalgae to treat wastewater as well as simultaneously produce biofuels is one of the approaches for a sustainable future. The manufacture of biofuels from microalgae is one of the next-generation biofuel solutions that has recently received a lot of interest, as it can remove nutrients from the wastewater whilst capturing carbon dioxide from the atmosphere. The resulting biomass are employed to generate biofuels, which can run fuel cell vehicles of zero emission, power combustion engines and power plants. By cultivating microalgae in wastewater, eutrophication can be prevented, thereby enhancing the quality of the effluent. Thus, by combining wastewater treatment and biofuel production, the cost of the biofuels, as well as the environmental hazards, can be minimized, as there is a supply of free and already available nutrients and water. In this article, the steps involved to generate the various biofuels through microalgae are detailed.


2021 ◽  
Author(s):  
V.S. Antipenko ◽  
S.V. Antipenko ◽  
S.A. Lebedev

Reducing the start-up time of internal combustion engines, especially at low temperatures and when the batteries are discharged, the use of supercapacitors leads to a reduction in emissions into the atmosphere, improving the quality of life in large metropolitan areas.


Sign in / Sign up

Export Citation Format

Share Document