scholarly journals A role for descending auditory cortical projections in songbird vocal learning

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yael Mandelblat-Cerf ◽  
Liora Las ◽  
Natalia Denisenko ◽  
Michale S Fee

Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets.

Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


Author(s):  
Robert C. Berwick

Language comprises a central component of a complex that is sometimes called “the human capacity.” This complex seems to have crystallized fairly recently among a small group in East Africa of whom people are all descendants. Common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization and auditory memory. There has been convergent evolution of the capacity for auditory-vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. Language’s recent evolutionary origin suggests that the computational machinery underlying syntax arose via the introduction of a single, simple, combinatorial operation. Further, the relation of a simple combinatorial syntax to the sensory-motor and thought systems reveals language to be asymmetric in design: while it precisely matches the representations required for inner mental thought, acting as the “glue” that binds together other internal cognitive and sensory modalities, at the same time it poses computational difficulties for externalization, that is, parsing and speech or signed production. Despite this mismatch, language syntax leads directly to the rich cognitive array that marks us as a symbolic species.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Matteo Grasso ◽  
Andrew M Haun ◽  
Giulio Tononi

Abstract Neuroscience has made remarkable advances in accounting for how the brain performs its various functions. Consciousness, too, is usually approached in functional terms: the goal is to understand how the brain represents information, accesses that information, and acts on it. While useful for prediction, this functional, information-processing approach leaves out the subjective structure of experience: it does not account for how experience feels. Here, we consider a simple model of how a “grid-like” network meant to resemble posterior cortical areas can represent spatial information and act on it to perform a simple “fixation” function. Using standard neuroscience tools, we show how the model represents topographically the retinal position of a stimulus and triggers eye muscles to fixate or follow it. Encoding, decoding, and tuning functions of model units illustrate the working of the model in a way that fully explains what the model does. However, these functional properties have nothing to say about the fact that a human fixating a stimulus would also “see” it—experience it at a location in space. Using the tools of Integrated Information Theory, we then show how the subjective properties of experienced space—its extendedness—can be accounted for in objective, neuroscientific terms by the “cause-effect structure” specified by the grid-like cortical area. By contrast, a “map-like” network without lateral connections, meant to resemble a pretectal circuit, is functionally equivalent to the grid-like system with respect to representation, action, and fixation but cannot account for the phenomenal properties of space.


2021 ◽  
pp. 1-16
Author(s):  
Heejung Jung ◽  
Tor D. Wager ◽  
R. McKell Carter

Abstract Functions in higher-order brain regions are the source of extensive debate. Although past trends have been to describe the brain—especially posterior cortical areas—in terms of a set of functional modules, a new emerging paradigm focuses on the integration of proximal functions. In this review, we synthesize emerging evidence that a variety of novel functions in the higher-order brain regions are due to convergence: convergence of macroscale gradients brings feature-rich representations into close proximity, presenting an opportunity for novel functions to arise. Using the TPJ as an example, we demonstrate that convergence is enabled via three properties of the brain: (1) hierarchical organization, (2) abstraction, and (3) equidistance. As gradients travel from primary sensory cortices to higher-order brain regions, information becomes abstracted and hierarchical, and eventually, gradients meet at a point maximally and equally distant from their sensory origins. This convergence, which produces multifaceted combinations, such as mentalizing another person's thought or projecting into a future space, parallels evolutionary and developmental characteristics in such regions, resulting in new cognitive and affective faculties.


2001 ◽  
Vol 7 (3) ◽  
pp. 384-390 ◽  
Author(s):  
ROSEMARY FAMA ◽  
PAULA K. SHEAR ◽  
LAURA MARSH ◽  
JEROME A. YESAVAGE ◽  
JARED R. TINKLENBERG ◽  
...  

This study examined the relationships between regional cortical and hippocampal brain volumes and components of remote memory (recall, recognition, sequencing, and photo naming of presidential candidates) in 13 individuals with Alzheimer's disease (AD). Recognition and sequencing of remote memory for public figures were associated with regional cortical volumes. Specifically, lower recognition and sequencing scores were associated with smaller parietal–occipital cortical volumes; poorer sequencing was also associated with smaller prefrontal cortical volumes. By contrast, poorer anterograde but not remote memory scores were correlated with smaller hippocampal volumes. Within the constraints of the brain regions measured, these findings highlight the importance of the posterior cortical areas for selective remote memory processes and provide support for the dissociation between cortically mediated remote memory and hippocampally mediated anterograde memory. (JINS, 2001, 7, 384–390.)


2021 ◽  
Vol 7 (2) ◽  
pp. eabe5948
Author(s):  
Elva Fridjonsdottir ◽  
Reza Shariatgorji ◽  
Anna Nilsson ◽  
Theodosia Vallianatou ◽  
Luke R. Odell ◽  
...  

l-DOPA treatment for Parkinson’s disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA–induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.


2019 ◽  
Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the amount of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2018 ◽  
Vol 29 (9) ◽  
pp. 3828-3835 ◽  
Author(s):  
Qilong Xin ◽  
Laura Ortiz-Terán ◽  
Ibai Diez ◽  
David L Perez ◽  
Julia Ginsburg ◽  
...  

Abstract Individual differences in humans are driven by unique brain structural and functional profiles, presumably mediated in part through differential cortical gene expression. However, the relationships between cortical gene expression profiles and individual differences in large-scale neural network organization remain poorly understood. In this study, we aimed to investigate whether the magnitude of sequence alterations in regional cortical genes mapped onto brain areas with high degree of functional connectivity variability across individuals. First, human genetic expression data from the Allen Brain Atlas was used to identify protein-coding genes associated with cortical areas, which delineated the regional genetic signature of specific cortical areas based on sequence alteration profiles. Thereafter, we identified brain regions that manifested high degrees of individual variability by using test-retest functional connectivity magnetic resonance imaging and graph-theory analyses in healthy subjects. We found that rates of genetic sequence alterations shared a distinct spatial topography with cortical regions exhibiting individualized (highly-variable) connectivity profiles. Interestingly, gene expression profiles of brain regions with highly individualized connectivity patterns and elevated number of sequence alterations are devoted to neuropeptide-signaling-pathways and chemical-synaptic-transmission. Our findings support that genetic sequence alterations may underlie important aspects of brain connectome individualities in humans. Significance Statement: The neurobiological underpinnings of our individuality as humans are still an unsolved question. Although the notion that genetic variation drives an individual’s brain organization has been previously postulated, specific links between neural connectivity and gene expression profiles have remained elusive. In this study, we identified the magnitude of population-based sequence alterations in discrete cortical regions and compared them to the brain topological distribution of functional connectivity variability across an independent human sample. We discovered that brain regions with high degree of connectional individuality are defined by increased rates of genetic sequence alterations; these findings specifically implicated genes involved in neuropeptide-signaling pathways and chemical-synaptic transmission. These observations support that genetic sequence alterations may underlie important aspects of the emergence of the brain individuality across humans.


Author(s):  
Robert C. Berwick

Language comprises a central component of a complex that is sometimes called “the human capacity.” This complex seems to have crystallized fairly recently among a small group in East Africa of whom people are all descendants. Common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization and auditory memory. There has been convergent evolution of the capacity for auditory-vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. Language’s recent evolutionary origin suggests that the computational machinery underlying syntax arose via the introduction of a single, simple, combinatorial operation. Further, the relation of a simple combinatorial syntax to the sensory-motor and thought systems reveals language to be asymmetric in design: while it precisely matches the representations required for inner mental thought, acting as the “glue” that binds together other internal cognitive and sensory modalities, at the same time it poses computational difficulties for externalization, that is, parsing and speech or signed production. Despite this mismatch, language syntax leads directly to the rich cognitive array that marks us as a symbolic species.


2021 ◽  
Author(s):  
Xiaoguang Tian ◽  
Afonso C Silva ◽  
Cirong Liu

Abstract Curiosity is a fundamental nature of animals for adapting to changing environments, but its underlying brain circuits and mechanisms remain poorly understood. One main barrier is that existing studies use rewards to train animals and motivate their engagement in behavioral tasks. As such, the rewards become significant confounders in interpreting curiosity. Here, we overcame this problem by studying research-naïve and naturally curious marmosets that can proactively and persistently participate in a visual choice task without external rewards. When performing the task, the marmosets manifested a strong innate preference towards acquiring new information, associated with faster behavioral responses. Longitudinally functional magnetic resonance imaging revealed behavior-relevant brain states that reflected choice preferences and engaged several brain regions, including the cerebellum, the hippocampus, and cortical areas 19DI, 25, and 46D, with the cerebellum being the most prominent. These results unveil the essential brain circuits and dynamics underlying curiosity-driven activity.


Sign in / Sign up

Export Citation Format

Share Document