scholarly journals Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Lindsey Araujo ◽  
Phillip Khim ◽  
Haik Mkhikian ◽  
Christie-Lynn Mortales ◽  
Michael Demetriou

Rapidly proliferating cells switch from oxidative phosphorylation to aerobic glycolysis plus glutaminolysis, markedly increasing glucose and glutamine catabolism. Although Otto Warburg first described aerobic glycolysis in cancer cells >90 years ago, the primary purpose of this metabolic switch remains controversial. The hexosamine biosynthetic pathway requires glucose and glutamine for de novo synthesis of UDP-GlcNAc, a sugar-nucleotide that inhibits receptor endocytosis and signaling by promoting N-acetylglucosamine branching of Asn (N)-linked glycans. Here, we report that aerobic glycolysis and glutaminolysis co-operatively reduce UDP-GlcNAc biosynthesis and N-glycan branching in mouse T cell blasts by starving the hexosamine pathway of glucose and glutamine. This drives growth and pro-inflammatory TH17 over anti-inflammatory-induced T regulatory (iTreg) differentiation, the latter by promoting endocytic loss of IL-2 receptor-α (CD25). Thus, a primary function of aerobic glycolysis and glutaminolysis is to co-operatively limit metabolite supply to N-glycan biosynthesis, an activity with widespread implications for autoimmunity and cancer.

2019 ◽  
Vol 19 (17) ◽  
pp. 1521-1534 ◽  
Author(s):  
Anatoly Sorokin ◽  
Vsevolod Shurkhay ◽  
Stanislav Pekov ◽  
Evgeny Zhvansky ◽  
Daniil Ivanov ◽  
...  

Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3020-3020
Author(s):  
Shayela Suvarna ◽  
Emily K.E. McCracken ◽  
Gowthami M. Arepally

Abstract Heparin-Induced Thrombocytopenia (HIT) is a drug-dependent immune disorder caused by autoantibodies to Platelet Factor 4 (PF4) and heparin. The immune basis of HIT is poorly understood. Recent studies describing transient antibody responses and absence of immunologic memory in HIT suggest that PF4/heparin autoantibodies may develop independently of T cell help. To investigate the cellular basis of the HIT immune response, we have developed a murine autoimmune model in which anti-murine PF4/heparin (anti-mP+H) arise de novo. Cohorts of BALB/c mice were immunized daily either intravenously (IV, n=10) or intraperitoneally (IP, n=10) for five days with complexes of murine (m) PF4/heparin (IV, n=5 or IP, n=5), heparin alone (IV, n= 2) or buffer (IV, n=3 or IP, n=5). Mice were screened for anti-mP+H for four weeks after immunization using a murine PF4/heparin ELISA. Peak antibody responses to antigen were seen at 11–15 days in 2/5 mice injected with IV mP+H (Day 11, mouse IV P+H #0 peak A450nm =0.34±0.01; Day15 mouse IV P+H #2 peak A450nm =0.69±0.01), and at days 22–25 in 2/5 mice injected by IP route (Day 22, mouse IP P+H #0 peak A450nm =0.37±0.01; Day 25 mouse IP P+H #2 peak A450nm =0.78±0.02). Anti-mP+H were not detected in mice injected with heparin alone or buffer alone at any time point (peak maximum IV A450nm= 0.1±0.001, Control #2; mouse IP P+H Control #2 A450nm =0.04±0.002). Serologically, murine autoantibodies were similar to anti-human (h) PF4/heparin. Anti-mP+H reactivity was specific for murine antigen (mouse IV P+H #2 A450nm=0.65±0.06), and was reduced with antigen in the presence of excess heparin (A450nm=0.38±0.01). Minimal reactivity was seen with wells coated with hP+H (A450nm=0.09±0.005), albumin (mouse IV P+H #2 A450nm=0.15±0.03), or PBS alone (mouse IV P+H #2 A450nm =0.16±0.01). Similar to human HIT antibodies, anti-mP+H were of IgG1 subclass. To determine if T cells are required for development of anti-mP+H, mice lacking T cell function (BIG:BALB/c-Nu, n=10) were injected IV with mP+H daily for five days. Unlike euthymic mice, nude mice did not manifest any antibody responses to IV injections of mP+H. In summary, we have developed a novel murine autoimmune model of anti-PF4/heparin that recapitulates many salient features of the human immune syndrome. Using this murine model, we demonstrate that T cells are essential for development PF4/heparin autoantibodies. Studies are currently underway to delineate mechanisms of T cell regulation and peripheral tolerance in HIT.


2018 ◽  
Author(s):  
Bidesh Mahata ◽  
Jhuma Pramanik ◽  
Louise van der Weyden ◽  
Krzysztof Polanski ◽  
Gozde Kar ◽  
...  

ABSTRACTTumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a novel transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway was sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4543-4551 ◽  
Author(s):  
Krishna V. Komanduri ◽  
Lisa S. St. John ◽  
Marcos de Lima ◽  
John McMannis ◽  
Steven Rosinski ◽  
...  

Advances in immune assessment, including the development of T-cell receptor excision circle (TREC) assays of thymopoiesis, cytokine-flow cytometry assays of T-cell function, and higher-order phenotyping of T-cell maturation subsets have improved our understanding of T-cell homeostasis. Limited data exist using these methods to characterize immune recovery in adult cord blood (CB) transplant recipients, in whom infection is a leading cause of mortality. We now report the results of a single-center prospective study of T-cell immune recovery after cord blood transplantation (CBT) in a predominantly adult population. Our primary findings include the following: (1) Prolonged T lymphopenia and compensatory expansion of B and natural killer (NK) cells was evident; (2) CB transplant recipients had impaired functional recovery, although we did observe posttransplantation de novo T-cell responses to cytomegalovirus (CMV) in a subset of patients; (3) Thymopoietic failure characterized post-CBT immune reconstitution, in marked contrast to results in other transplant recipients; and (4) Thymopoietic failure was associated with late memory T-cell skewing. Our data suggest that efforts to improve outcomes in adult CB transplant recipients should be aimed at optimizing T-cell immune recovery. Strategies that improve the engraftment of lymphoid precursors, protect the thymus during pretransplant conditioning, and/or augment the recovery of thymopoiesis may improve outcomes after CBT.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009278
Author(s):  
Fredrik Barrenäs ◽  
Scott G. Hansen ◽  
Lynn Law ◽  
Connor Driscoll ◽  
Richard R. Green ◽  
...  

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68–1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68–1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68–1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Marie Bettonville ◽  
Stefania d'Aria ◽  
Kathleen Weatherly ◽  
Paolo E Porporato ◽  
Jinyu Zhang ◽  
...  

Energy metabolism is essential for T cell function. However, how persistent antigenic stimulation affects T cell metabolism is unknown. Here, we report that long-term in vivo antigenic exposure induced a specific deficit in numerous metabolic enzymes. Accordingly, T cells exhibited low basal glycolytic flux and limited respiratory capacity. Strikingly, blockade of inhibitory receptor PD-1 stimulated the production of IFNγ in chronic T cells, but failed to shift their metabolism towards aerobic glycolysis, as observed in effector T cells. Instead, chronic T cells appeared to rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to produce ATP for IFNγ synthesis. Check-point blockade, however, increased mitochondrial production of superoxide and reduced viability and effector function. Thus, in the absence of a glycolytic switch, PD-1-mediated inhibition appears essential for limiting oxidative metabolism linked to effector function in chronic T cells, thereby promoting survival and functional fitness.


2003 ◽  
Vol 21 (20) ◽  
pp. 3826-3835 ◽  
Author(s):  
Isabelle Bedrosian ◽  
Rosemarie Mick ◽  
Shuwen Xu ◽  
Harvey Nisenbaum ◽  
Mark Faries ◽  
...  

Purpose: We evaluated the feasibility, safety, and immunogenicity of mature, peptide-pulsed dendritic cell (DC) vaccines administered by different routes. Patients and Methods: We performed a randomized, phase I, dose-escalation study in 27 patients with metastatic melanoma receiving four autologous peptide-pulsed DC vaccinations. Patients were randomly assigned to an intravenous (IV), intranodal (IN), or intradermal (ID) route of administration (ROA). For each route, primary end points were dose-limiting toxicity, maximum-tolerated dose, and T-cell sensitization. Sensitization was evaluated through tetramer staining, in vitro peptide recognition assays, and delayed-type hypersensitivity (DTH) responses. Results: Twenty-two (81.5%) of 27 patients completed all four vaccinations. Vaccinations were well tolerated; a few patients exhibited grade 1 to 2 toxicities including rash, fever, and injection site reaction. All routes of administration induced comparable increases in tetramer-staining CD8+ T cells (five of seven IV, four of seven IN, and four of six ID patients). However, the IN route induced significantly higher rates for de novo development of CD8+ T cells that respond by cytokine secretion to peptide-pulsed targets (six [85.7%] of seven IN patients v two [33%] of six ID patients v none [0%] of six IV patients; P = .005) and de novo DTH (seven [87.5%] of eight IN patients v two [33.3%] of six ID patients v one [14.3%] of seven IV patients; P = .01) compared with other routes. Conclusion: Administration of this peptide-pulsed mature DC vaccine by IN, IV, or ID routes is feasible and safe. IN administration seems to result in superior T-cell sensitization as measured by de novo target-cell recognition and DTH priming, indicating that IN may be the preferred ROA for mature DC vaccines.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii215
Author(s):  
Meghan Logun ◽  
Maxwell Colonna ◽  
Arthur Edison ◽  
Lohitash Karumbaiah

Abstract Glioblastoma (GBM), like most cancers, undergo metabolic alterations to primarily utilize aerobic glycolysis in the hypoxic tumor microenvironment (TME). Similarly, activated T cells switch to glycolysis upon antigen recognition to cope with proliferation needs but are not equally equipped to survive in the hypoxic TME. Metabolic reprogramming within GBM TME contributes to therapeutic resistance and tumor progression, but the effects of metabolic alterations on therapeutic T cell survival and efficacy have not been fully elucidated. We hypothesized that hypoxia in GBM/T-cell co-cultures will significantly impair T cell proliferation and function. We conducted in vitro co-culture assays and nuclear magnetic resonance (NMR)–based assessments in hypoxic (1%O2) or normoxic conditions to detect metabolic changes in real-time. Imaging cytometry for cell cycle assessment demonstrated that GSCs were unaffected by hypoxia, but roughly 90% of healthy T cells arrested in G0/G1 along with significant reduction in glycan precursor UDP-GlcNAc presence. Media samples over 96h in normal and hypoxic oxygen conditions from cells in solitary or co-cultures were analyzed using a Bruker Avance III HD spectrometer at 600 MHz for comparison over time using PCA analysis of metabolic intermediate differences. After 16h, there was observable differences in produced metabolites between the T cells cultured alone or co-culture with GSCs, compared to the GSCs alone or media alone controls. Quantifiable changes in glucose, lactate, fumarate, acetate and pyruvate, among others, indicated a large shift in T cell metabolism dependent on oxygen conditions and co-culture interactions, while GSCs are less metabolically responsive to culture conditions. Ongoing experiments will examine precise changes in UDP-GlcNAc and glycosylation precursors in T cells and CAR-T cells via targeted NMR analysis, which we expect will help us understand energy dependent mechanisms of T cell exhaustion and lead to development of novel strategies to sustain T cell function in the hostile TME.


Author(s):  
Mukul Prasad ◽  
Joanna Brzostek ◽  
Namrata Gautam ◽  
Renu Balyan ◽  
Vasily Rybakin ◽  
...  

Abstract Themis is a T cell lineage-specific molecule that is involved in TCR signal transduction. The effects of germline Themis deletion on peripheral CD4+ T cell function have not been described before. In this study, we found that Themis-deficient CD4+ T cells had poor proliferative responses, reduced cytokine production in vitro and weaker inflammatory potential, as measured by their ability to cause colitis in vivo. Resting T cells are quiescent, whereas activated T cells have high metabolic demands. Fulfillment of these metabolic demands depends upon nutrient availability and upregulation of nutrient intake channels after efficient TCR signal transduction, which leads to metabolic reprogramming in T cells. We tested whether defects in effector functions were caused by impaired metabolic shifts in Themis-deficient CD4+ T cells due to inefficient TCR signal transduction, in turn caused by the lack of Themis. We found that upon TCR stimulation, Themis-deficient CD4+ T cells were unable to upregulate the expression of insulin receptor (IR), glucose transporter (GLUT1), the neutral amino acid transporter CD98 and the mTOR pathway, as measured by c-Myc and pS6 expression. Mitochondrial analysis of activated Themis-deficient CD4+ T cells showed more oxidative phosphorylation (OXPHOS) than aerobic glycolysis, indicating defective metabolic reprogramming. Furthermore, we found reduced NFAT translocation in Themis-deficient CD4+ T cells upon TCR stimulation. Using previously reported ChIP-seq and RNA-seq data, we found that NFAT nuclear translocation controls IR gene expression. Together, our results describe an internal circuit between TCR signal transduction, NFAT nuclear translocation, and metabolic signaling in CD4+ T cells.


2001 ◽  
Vol 120 (5) ◽  
pp. A314-A315
Author(s):  
D FRANCHIMONT ◽  
J GALON ◽  
M VACCHIO ◽  
R VISCONTI ◽  
G CHROUSOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document