scholarly journals Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Giulia Fianco ◽  
Maria Patrizia Mongiardi ◽  
Andrea Levi ◽  
Teresa De Luca ◽  
Marianna Desideri ◽  
...  

Caspase-8 is a key player in extrinsic apoptosis and its activity is often downregulated in cancer. However, human Caspase-8 expression is retained in some tumors, including glioblastoma (GBM), suggesting that it may support cancer growth in these contexts. GBM, the most aggressive of the gliomas, is characterized by extensive angiogenesis and by an inflammatory microenvironment that support its development and resistance to therapies. We have recently shown that Caspase-8 sustains neoplastic transformation in vitro in human GBM cell lines. Here, we demonstrate that Caspase-8, through activation of NF-kB, enhances the expression and secretion of VEGF, IL-6, IL-8, IL-1beta and MCP-1, leading to neovascularization and increased resistance to Temozolomide. Importantly, the bioinformatics analysis of microarray gene expression data derived from a set of high-grade human gliomas, shows that high Caspase-8 expression levels correlate with a worse prognosis.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Martina Bonacini ◽  
Aide Negri ◽  
Pierpaola Davalli ◽  
Valeria Naponelli ◽  
Ileana Ramazzina ◽  
...  

Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-κB. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as in vitro and in vivo models of prostate cancer (PCa). Our results demonstrated that (i) CLU expression is significantly downregulated in human PCa and inversely correlates with the expression of p65 in metastases; (ii) CLU overexpression in PCa cells reduces the Ser536 phosphorylation of p65, inhibits NF-κB nuclear translocation, and reduces the transcription of matrix metalloproteinase-9 and metalloproteinase-2 (MMP-9 and MMP-2). Conversely, CLU silencing promotes NF-κB activation and transcriptional upregulation of MMP-9; and (iii) expression and activity of MMP-2 and MMP-9 are increased in CLU−/− mice (CLUKO) and in TRAMP/CLUKO mice in comparison to their relative Clu+/+ littermates. Taken together, our data support the hypothesis that CLU downregulation, an early and relevant event in PCa onset, may inhibit NF-κB activation and limit the execution of a transcriptional program that favor the disease progression towards a metastatic stage.


Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 965
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Daniela Maria Rasà ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ke Zhang ◽  
Zhuoying Li ◽  
Yunyang Lu ◽  
Linyi Xiang ◽  
Jiadong Sun ◽  
...  

Abstract Background The Wnt planar cell polarity (PCP) pathway is implicated in osteoarthritis (OA) both in animals and in humans. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the orientation and alignment of chondrocytes in the growth plate. However, its functional roles in OA still remain undefined. Here, we explored the effects of Vangl2 on OA chondrocyte in vitro and further elucidated the molecular mechanism of silencing Vangl2 in Wnt5a-overexpressing OA chondrocytes. Methods Chondrocytes were treated with IL-1β (10 ng/mL) to simulate the inflammatory microenvironment of OA. The expression levels of Vangl2, Wnt5a, MMPs, and related proinflammatory cytokines were measured by RT-qPCR. Small interfering RNA (siRNA) of Vangl2 and the plasmid targeting Wnt5a were constructed and transfected into ATDC5 cells. Then, the functional roles of silencing Vangl2 in the OA chondrocytes were investigated by Western blotting, RT-qPCR, and immunocytochemistry (ICC). Transfected OA chondrocytes were subjected to Western blotting to analyze the relationship between Vangl2 and related signaling pathways. Results IL-1β induced the production of Vangl2, Wnt5a, and MMPs in a time-dependent manner and the significantly increased expression of Vangl2. Vangl2 silencing effectively suppressed the expression of MMP3, MMP9, MMP13, and IL-6 at both gene and protein levels and upregulated the expression of type II collagen and aggrecan. Moreover, knockdown of Vangl2 inhibited the phosphorylation of MAPK signaling molecules (P38, ERK, and JNK) and P65 in Wnt5a-overexpressing OA chondrocytes. Conclusions For the first time, we demonstrate that Vangl2 is involved in the OA process. Vangl2 silencing can notably alleviate OA progression in vitro by inhibiting the expression of MMPs and increasing the formation of the cartilage matrix and can inhibit the proinflammatory effects of Wnt5a via MAPK and NF-κB pathway. This study provides new insight into the mechanism of cartilage inflammation.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii233-ii233
Author(s):  
April Bell ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
Lakshmi Bollu ◽  
...  

Abstract Glioblastoma (GBM) is the most common and aggressive primary central nervous system tumor in adults with a median survival of 14.6 months. GBM is a potently immunosuppressive cancer due in-part to the prolific expression of immunosuppressive indoleamine 2,3 dioxygenase 1 (IDO). Tumor cell IDO facilitates the intratumoral accumulation of regulatory T cells (Tregs; CD4+CD25+FoxP3+). Although immunosuppressive IDO activity is canonically characterized by the conversion of tryptophan into kynurenine, we have utilized transgenic and syngeneic mouse models and mutant glioma lines to demonstrate that tumor cell IDO increases Treg accumulation independent of tryptophan metabolism. Here, we address the gap in our understanding of IDO signaling activity in vivo. Subcutaneously-engrafted human GBM expressing human IDO-GFP cDNA was isolated from immunodeficient humanized NSG-SGM3 mice. The tumor was immunoprecipitated for the GFP tag using GFP-TRAP followed by mass spectrometry which revealed a novel methylation site on a lysine residue at amino acid 373 in the IDO C-terminus region. Western blot analysis of IDO protein also revealed the presence of tyrosine phosphorylation. Additionally, we recently created a new transgenic IDO reporter mouse model whereby endogenous IDO is fused to GFP via a T2A linker (IDO→GFP). This model allows for the isolation of IDO+ cells in real-time and without causing cell death, thereby creating the opportunity for downstream molecular analysis of in situ-isolated GFP+ cells. Collectively, our work suggests that IDO non-enzyme activity may involve the post-translational modifications we recently identified. As IDO activity may differ between in vitro and in vivo modeling systems, we will use the new IDO→GFP reporter mouse model for an improved mechanistic understanding of how immunosuppressive IDO facilitates Treg accumulation in vivo.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii278-iii278
Author(s):  
Viktoria Melcher ◽  
Monika Graf ◽  
Marta Interlandi ◽  
Natalia Moreno ◽  
Flavia W de Faria ◽  
...  

Abstract Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the pan-macrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.


Sign in / Sign up

Export Citation Format

Share Document