scholarly journals Nuclear export of misfolded SOD1 mediated by a normally buried NES-like sequence reduces proteotoxicity in the nucleus

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yongwang Zhong ◽  
Jiou Wang ◽  
Mark J Henderson ◽  
Peixin Yang ◽  
Brian M Hagen ◽  
...  

Over 170 different mutations in the gene encoding SOD1 all cause amyotrophic lateral sclerosis (ALS). Available studies have been primarily focused on the mechanisms underlying mutant SOD1 cytotoxicity. How cells defend against the cytotoxicity remains largely unknown. Here, we show that misfolding of ALS-linked SOD1 mutants and wild-type (wt) SOD1 exposes a normally buried nuclear export signal (NES)-like sequence. The nuclear export carrier protein CRM1 recognizes this NES-like sequence and exports misfolded SOD1 to the cytoplasm. Antibodies against the NES-like sequence recognize misfolded SOD1, but not native wt SOD1 both in vitro and in vivo. Disruption of the NES consensus sequence relocalizes mutant SOD1 to the nucleus, resulting in higher toxicity in cells, and severer impairments in locomotion, egg-laying, and survival in Caenorhabditis elegans. Our data suggest that SOD1 mutants are removed from the nucleus by CRM1 as a defense mechanism against proteotoxicity of misfolded SOD1 in the nucleus.

2004 ◽  
Vol 164 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Hiroshi Akazawa ◽  
Sumiyo Kudoh ◽  
Naoki Mochizuki ◽  
Noboru Takekoshi ◽  
Hiroyuki Takano ◽  
...  

The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain–containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5–induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5.


2008 ◽  
Vol 29 (4) ◽  
pp. 1000-1006 ◽  
Author(s):  
Christine S. Vissinga ◽  
Tiong C. Yeo ◽  
Sarah Warren ◽  
James V. Brawley ◽  
Jennifer Phillips ◽  
...  

ABSTRACT Nijmegen breakage syndrome arises from hypomorphic mutations in the NBN gene encoding nibrin, a component of the MRE11/RAD50/nibrin (MRN) complex. In mammalian cells, the MRN complex localizes to the nucleus, where it plays multiple roles in the cellular response to DNA double-strand breaks. In the current study, sequences in mouse nibrin required to direct the nuclear localization of the MRN complex were identified by site-specific mutagenesis. Unexpectedly, nibrin was found to contain both nuclear localizing signal (NLS) sequences and a nuclear export signal (NES) sequence whose functions were confirmed by mutagenesis. Both nuclear import and export sequences were active in vivo. Disruption of either the NLS or NES sequences of nibrin significantly altered the cellular distribution of nibrin and Mre11 and impaired survival after exposure to ionizing radiation. Mutation of the NES sequence in nibrin slowed the turnover of phosphorylated nibrin after irradiation, indicating that nuclear export of nibrin may function, in part, to downregulate posttranslationally modified MRN complex components after DNA damage responses are complete.


2006 ◽  
Vol 26 (13) ◽  
pp. 4895-4910 ◽  
Author(s):  
Laura V. Papp ◽  
Jun Lu ◽  
Frank Striebel ◽  
Derek Kennedy ◽  
Arne Holmgren ◽  
...  

ABSTRACT Selenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2). Here, we report the characterization of motifs within SBP2 that regulate its subcellular localization and function. We show that SBP2 shuttles between the nucleus and the cytoplasm via intrinsic, functional nuclear localization signal and nuclear export signal motifs and that its nuclear export is dependent on the CRM1 pathway. Oxidative stress induces nuclear accumulation of SBP2 via oxidation of cysteine residues within a redox-sensitive cysteine-rich domain. These modifications are efficiently reversed in vitro by human thioredoxin and glutaredoxin, suggesting that these antioxidant systems might regulate redox status of SBP2 in vivo. Depletion of SBP2 in cell lines using small interfering RNA results in a decrease in Sec incorporation, providing direct evidence for its requirement for selenoprotein synthesis. Furthermore, Sec incorporation is reduced substantially after treatment of cells with agents that cause oxidative stress, suggesting that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins.


2005 ◽  
Vol 79 (14) ◽  
pp. 8773-8783 ◽  
Author(s):  
Deborah Stewart ◽  
Anirban Ghosh ◽  
Greg Matlashewski

ABSTRACT The E6 protein from high-risk human papillomaviruses (HPVs) targets the p53 tumor suppressor for degradation by the proteasome pathway. This ability contributes to the oncogenic potential of these viruses. However, several aspects concerning the mechanism of E6-mediated p53 degradation at the cellular level remain to be clarified. This study therefore examined the role of cell localization and ubiquitination in the E6-mediated degradation of p53. As demonstrated within, following coexpression both p53 and high-risk HPV type 18 (HPV-18) E6 (18E6) shuttle from the nucleus to the cytoplasm. Mutation of the C-terminal nuclear export signal (NES) of p53 or treatment with leptomycin B inhibited the 18E6-mediated nuclear export of p53. Impairment of nuclear export resulted in only a partial reduction in 18E6-mediated degradation, suggesting that both nuclear and cytoplasmic proteasomes can target p53 for degradation. This was also consistent with the observation that 18E6 mediated the accumulation of polyubiquitinated p53 in the nucleus. In comparison, a p53 isoform that localizes predominantly to the cytoplasm was not targeted for degradation by 18E6 in vivo but could be degraded in vitro, arguing that nuclear p53 is the target for E6-mediated degradation. This study supports a model in which (i) E6 mediates the accumulation of polyubiquitinated p53 in the nucleus, (ii) E6 is coexported with p53 from the nucleus to the cytoplasm via a CRM1 nuclear export mechanism involving the C-terminal NES of p53, and (iii) E6-mediated p53 degradation can be mediated by both nuclear and cytoplasmic proteasomes.


2020 ◽  
Vol 133 (18) ◽  
pp. jcs241943
Author(s):  
Marilyne Duffraisse ◽  
Rachel Paul ◽  
Julie Carnesecchi ◽  
Bruno Hudry ◽  
Agnes Banreti ◽  
...  

ABSTRACTHox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro. We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.


2007 ◽  
Vol 2007 (369) ◽  
pp. tw21-tw21
Author(s):  
L. Bryan Ray

Responses of the immune systems of plants and animals show what appears to be evidence of ancient attacks and counterattacks by pathogens and their hosts in the battle for survival. Drosophila have developed receptors that recognize constituents of bacterial cell walls and mount an immune response that causes proteolytic cleavage of the cytokine Spätzle. The Spätzle fragment then activates Toll receptors and leads to production of antimicrobial peptides. Gottar et al. explored the response of Drosophila to fungal infections and found a similar defense mechanism but also unveiled a second signaling pathway that detects a virulence factor produced by the fungus. The authors infected flies by pricking them with a needle dipped in fungus-containing solution and monitored survival or Toll-dependent expression of the gene encoding an antifungal peptide. They found that the receptor GNBP3 (Gram-negative binding protein 3) was required for detection of cell wall components of the fungi and consequent activation of Toll receptors. However, cells with a mutated GNB3 protein could still respond to fungi and activate Toll, but in this case cell wall-derived components were not the trigger. This response depended on the presence of live fungi and, presumably, the production of virulence factors. One such factor is the protease PR1, and the authors showed that expression of PR1 alone led to activation of the Toll pathway. Knowing that a fly protease PSH (Persephone), which is thought to participate in a cascade of proteases that lead to Spätzle cleavage and activation of the Toll pathway in response to fungi, itself requires proteolytic removal of a prodomain for activity, the authors tested whether PR1 might activate PSH. Indeed, studies in vitro and in vivo indicated that PSH appears to be a direct substrate of PR1. The fungi use the PR1 protease to break down the protective cuticle of the insect and allow infection. The authors propose that PSH acts like a sensor to monitor the status of the cuticle. If the presence of PR1 shows that the defense barrier is being broken, PSH is cleaved and the antimicrobial signaling is initiated. Whether humans have such a sensor system to recognize fungal virulence factors remains unknown.M. Gottar, V. Gobert, A. A. Matskevich, J.-M. Reichhart, C. Wang, T. M. Butt, M. Belvin, J. A. Hoffmann, D. Ferrandon, Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell127, 1425-1437 (2006). [Online Journal]


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Federica Marzano ◽  
Antonio Rapacciuolo ◽  
Walter J Koch ◽  
Alessandro Cannavo

Introduction: G protein-coupled receptor (GPCR) kinase 5 (GRK5) is a multifunctional protein and depending on its localization within the cell, it has been shown to elicit either protective or deleterious effects. For instance in the heart, when anchored to the plasma membrane, this kinase can regulate specific GPCRs via canonical phosphorylation that can confer cardioprotection. However, when it accumulates in the nucleus its non-canonical activity can drive pathological hypertrophic gene transcription. Interestingly, the latter effects may not be kinase-dependent. Hypothesis: The role played by GRK5’s catalytic activity in the heart has not been fully elucidated and for that reason we sought to assess the in vivo consequences of inactivating the catalytic site of GRK5 with an initial focus at examining the basal cardiac phenotype and response to stress. Methods: We used CRISPR/Cas9 technology to generate a novel knock-in mouse model, with the ATP binding lysine (K) 215 in the catalytic cleft replaced by arginine (R) (GRK5-K215R) resulting in mice devoid of any GRK5 catalytic activity. We studies baseline cardiac function in these mutant mice compared to wild-type (WT) littermates and then stressed them via transverse aortic constriction (TAC). In vitro, we used H9c2 cardiomyocytes and various GRK5 mutants for mechanistic studies. Results: Compared to age-matched WT littermates, GRK5-K215R mice revealed marked and early (9 weeks) deterioration of cardiac function, with augmented apoptosis and fibrosis basally. Importantly, mutant knock-in mice displayed increased p53 gene expression (both at mRNA and protein levels). Moreover, TAC induced increased dysfunction and fibrosis in GRK5-K215R mice compared to WT. Mechanistically, we transduced H9c2 cells with adenoviruses (Ad), encoding for WT GRK5 (Ad-GRK5) or a mutant GRK5 lacking its nuclear localization signal (Ad-NLS) and when GRK5 was localized only outside the nucleus, there was a significant protection against apoptosis, with reduced p53 protein and mRNA levels. Conversely, when we overexpressed a mutant GRK5 without nuclear export signal (GRK5-ΔNES) to trap GRK5 within the nucleus, we found a significant increase in apoptosis, with high p53 protein expression levels. Conclusions: Inactivating GRK5’s catalytic activity impairs its nuclear regulation of p53. This can result in higher levels of p53 mRNA and protein resulting in higher rates of apoptosis in the heart leading to significant cardiac dysfunction and an intolerance to stress.


2001 ◽  
Vol 154 (5) ◽  
pp. 1019-1030 ◽  
Author(s):  
Joshua Sussman ◽  
David Stokoe ◽  
Natalya Ossina ◽  
Emma Shtivelman

AHNAK is a ubiquitously expressed giant phosphoprotein that was initially identified as a gene product subject to transcriptional repression in neuroblastoma. AHNAK is predominantly nuclear in cells of nonepithelial origin, but is cytoplasmic or associated with plasma membrane in epithelial cells. In this study we show that the extranuclear localization of AHNAK in epithelial cells depends on the formation of cell–cell contacts. We show that AHNAK is a phosphorylation substrate of protein kinase B (PKB) in vitro and in vivo. Nuclear exclusion of AHNAK is mediated through a nuclear export signal (NES) in a manner that depends on the phosphorylation of serine 5535 of AHNAK by PKB, a process that also plays a major role in determining extranuclear localization of AHNAK. AHNAK is a new PKB substrate whose function, though unknown, is likely to be regulated by its localization, which is in turn regulated by PKB.


2005 ◽  
Vol 25 (3) ◽  
pp. 1089-1099 ◽  
Author(s):  
Ruben N. Karapetian ◽  
Alexandra G. Evstafieva ◽  
Irina S. Abaeva ◽  
Nina V. Chichkova ◽  
Grigoriy S. Filonov ◽  
...  

ABSTRACT Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin α. The in vivo and in vitro data indicated that the prothymosin α-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin α was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin α by using prothymosin α overproduction and mRNA interference approaches. Our data attribute to prothymosin α the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin α and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes.


2008 ◽  
Vol 19 (12) ◽  
pp. 5296-5308 ◽  
Author(s):  
Mireille Khacho ◽  
Karim Mekhail ◽  
Karine Pilon-Larose ◽  
Arnim Pause ◽  
Jocelyn Côté ◽  
...  

The cytoplasmic translation factor eEF1A has been implicated in the nuclear export of tRNA species in lower eukaryotes. Here we demonstrate that eEF1A plays a central role in nuclear export of proteins in mammalian cells. TD-NEM (transcription-dependent nuclear export motif), a newly characterized nuclear export signal, mediates efficient nuclear export of several proteins including the von Hippel-Lindau (VHL) tumor suppressor and the poly(A)-binding protein (PABP1) in a manner that is dependent on ongoing RNA polymerase II (RNA PolII)-dependent transcription. eEF1A interacts specifically with TD-NEM of VHL and PABP1 and disrupting this interaction, by point mutations of key TD-NEM residues or treatment with actinomycin D, an inhibitor of RNA PolII-dependent transcription, prevents assembly and nuclear export. siRNA-induced knockdown or antibody-mediated depletion of eEF1A prevents in vivo and in vitro nuclear export of TD-NEM–containing proteins. Nuclear retention experiments and inhibition of the Exportin-5 pathway suggest that eEF1A stimulates nuclear export of proteins from the cytoplasmic side of the nuclear envelope, without entering the nucleus. Together, these data identify a role for eEF1A, a cytoplasmic mediator of tRNA export in yeast, in the nuclear export of proteins in mammalian cells. These results also provide a link between the translational apparatus and subcellular trafficking machinery demonstrating that these two central pathways in basic metabolism can act cooperatively.


Sign in / Sign up

Export Citation Format

Share Document