scholarly journals Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body

2020 ◽  
Vol 133 (18) ◽  
pp. jcs241943
Author(s):  
Marilyne Duffraisse ◽  
Rachel Paul ◽  
Julie Carnesecchi ◽  
Bruno Hudry ◽  
Agnes Banreti ◽  
...  

ABSTRACTHox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro. We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.

2019 ◽  
Author(s):  
Marilyne Duffraisse ◽  
Rachel Paul ◽  
Bruno Hudry ◽  
Julie Carnesecchi ◽  
Agnes Banretti ◽  
...  

Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deleted forms of the Drosophila Hox protein Ultrabithorax (Ubx), we revealed the presence of an unconventional Nuclear Export Signal (NES) that overlaps with the highly conserved hexapeptide (HX) motif. This short linear motif was originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors in development and cancer. Here we show that the HX motif is involved in the interaction with the major CRM1/Embargoed exportin protein. This novel role was found in several Drosophila and human Hox proteins. We provide evidence that HX-dependent Hox nuclear export is tightly regulated in the Drosophila fat body to control the onset of autophagy. Our results underline the high molecular versatility of a unique short peptide motif for controlling context-dependent activity of Hox proteins at both transcriptional and non-transcriptional levels.


2004 ◽  
Vol 164 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Hiroshi Akazawa ◽  
Sumiyo Kudoh ◽  
Naoki Mochizuki ◽  
Noboru Takekoshi ◽  
Hiroyuki Takano ◽  
...  

The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain–containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5–induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5.


2005 ◽  
Vol 25 (3) ◽  
pp. 1089-1099 ◽  
Author(s):  
Ruben N. Karapetian ◽  
Alexandra G. Evstafieva ◽  
Irina S. Abaeva ◽  
Nina V. Chichkova ◽  
Grigoriy S. Filonov ◽  
...  

ABSTRACT Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin α. The in vivo and in vitro data indicated that the prothymosin α-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin α was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin α by using prothymosin α overproduction and mRNA interference approaches. Our data attribute to prothymosin α the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin α and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


2021 ◽  
Vol 20 ◽  
pp. 153303382199528
Author(s):  
Qing Lv ◽  
Qinghua Xia ◽  
Anshu Li ◽  
Zhiyong Wang

This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.


2010 ◽  
Vol 21 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Matthew Reid MacPherson ◽  
Patricia Molina ◽  
Serhiy Souchelnytskyi ◽  
Christer Wernstedt ◽  
Jorge Martin-Pérez ◽  
...  

Snail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3β phosphorylation is important for Snail1 functionality. Stabilization mechanisms independent of GSK3β have also been reported, including interaction with LOXL2 or regulation of the COP9 signalosome by inflammatory signals. To get further insights into the role of Snail1 phosphorylation, we have performed an in-depth analysis of in vivo human Snail1 phosphorylation combined with mutational studies. We identify new phosphorylation sites at serines 11, 82, and 92 and confirmed previously suggested phosphorylations at serine 104 and 107. Serines 11 and 92 participate in the control of Snail1 stability and positively regulate Snail1 repressive function and its interaction with mSin3A corepressor. Furthermore, serines 11 and 92 are required for Snail1-mediated EMT and cell viability, respectively. PKA and CK2 have been characterized as the main kinases responsible for in vitro Snail1 phosphorylation at serine 11 and 92, respectively. These results highlight serines 11 and 92 as new players in Snail1 regulation and suggest the participation of CK2 and PKA in the modulation of Snail1 functionality.


2021 ◽  
Vol 11 ◽  
Author(s):  
Suzhen Wang ◽  
Tianning Yang ◽  
Zhengxiang He

BackgroundThe involvement of microRNA-338-5p in modulating NPC pathogenesis is still largely unknown, and this study aimed to investigate this issue.MethodsThe expressions of cancer associated genes were determined by Real-Time qPCR and Western Blot, and cell apoptosis was determined by flow cytometer (FCM). CCK-8 assay and colony formation assay were respectively used to determine cell proliferation and colony formation abilities. Transwell assay was used to evaluate cell migration. The expression levels of Ki67 protein in mice tissues were measured by Immunohistochemistry (IHC) assay.ResultsThe present study found that microRNA-338-5p suppressed NPC progression by degrading its downstream target, Wnt family member 2B (WNT2B). Specifically, microRNA-338-5p tended to be low-expressed in NPC tissues and cell lines, compared to the non-tumor nasopharyngeal mucosa tissues and normal nasopharyngeal cell line (NP69). Upregulation of microRNA-338-5p inhibited proliferation, mobility, and epithelial-mesenchymal transition (EMT) in NPC cells in vitro, while silencing of microRNA-338-5p had opposite effects. Consistently, microRNA-338-5p suppressed tumorigenesis of NPC cells in vivo. In addition, microRNA-338-5p targeted WNT2B for degradation and inhibition, and the inhibiting effects of microRNA-338-5p overexpression on NPC development were reversed by upregulating WNT2B.ConclusionsTaken together, we concluded that microRNA-338-5p targeted WNT2B to hinder NPC development.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2021 ◽  
Author(s):  
Yanhui Hao ◽  
Wenchao Li ◽  
Hui Wang ◽  
Jing Zhang ◽  
Haoyu Wang ◽  
...  

Abstract Background With the development of science and technology, microwaves are being widely used. More and more attention has been paid to the potential health hazards of microwave exposure. The regulation of miR-30a-5p (miR-30a) on autophagy is involved in the pathophysiological process of many diseases. Our previous study found that 30 mW/cm2 microwave radiation could reduce miR-30a expression and activate neuronal autophagy in rat hippocampus. However, the roles played by miR-30a in microwave-induced neuronal autophagy and related mechanisms remain largely unexplored. Results In the present study, we established neuronal damage models by exposing rat hippocampal neurons and rat adrenal pheochromocytoma (PC12) cell-derived neuron-like cells to 30 mW/cm2 microwave, which resulted in miR-30a downregulation and autophagy activation in vivo and in vitro. Bioinformatics analysis was conducted, and Beclin1, Prkaa2, Irs1, Pik3r2, Rras2, Ddit4, Gabarapl2 and autophagy-related gene 12 (Atg12) were identified as potential downstream target genes of miR-30a involved in regulating autophagy. Based on our previous findings that microwave radiation can cause a neuronal energy metabolism disorder, Prkaa2, encoding adenosine 5’-monophosphate-activated protein kinase α2 (AMPKα2, an important catalytic subunit of energy sensor AMPK), was selected for further analysis. Dual-luciferase reporter assay results showed that Prkaa2 is a downstream target gene of miR-30a. Microwave radiation increased the expression and phosphorylation (Thr172) of AMPKα both in vivo and in vitro. Moreover, the transduction of cells with miR-30a mimics suppressed AMPKα2 expression, inhibited AMPKα (Thr172) phosphorylation and reduced autophagy flux in neuron-like cells. Importantly, miR-30a mimics abolished microwave-activated autophagy and inhibited microwave-induced AMPKα (Thr172) phosphorylation. Conclusions AMPKα2 was a newly founded downstream gene of miR-30a involved in autophagy regulation, and miR-30a downregulation after microwave radiation could promote neuronal autophagy by increasing AMPKα2 expression and activating AMPK signaling.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3405-3413 ◽  
Author(s):  
Adi Inbal ◽  
Naomi Halachmi ◽  
Charna Dibner ◽  
Dale Frank ◽  
Adi Salzberg

Homothorax (HTH) is a homeobox-containing protein, which plays multiple roles in the development of the embryo and the adult fly. HTH binds to the homeotic cofactor Extradenticle (EXD) and translocates it to the nucleus. Its function within the nucleus is less clear. It was shown, mainly by in vitro studies, that HTH can bind DNA as a part of ternary HTH/EXD/HOX complexes, but little is known about the transcription regulating function of HTH-containing complexes in the context of the developing fly. Here we present genetic evidence, from in vivo studies, for the transcriptional-activating function of HTH. The HTH protein was forced to act as a transcriptional repressor by fusing it to the Engrailed (EN) repression domain, or as a transcriptional activator, by fusing it to the VP16 activation domain, without perturbing its ability to translocate EXD to the nucleus. Expression of the repressing form of HTH in otherwise wild-type imaginal discs phenocopied hth loss of function. Thus, the repressing form was working as an antimorph, suggesting that normally HTH is required to activate the transcription of downstream target genes. This conclusion was further supported by the observation that the activating form of HTH caused typical hth gain-of-function phenotypes and could rescue hth loss-of-function phenotypes. Similar results were obtained with XMeis3, the Xenopus homologue of HTH, extending the known functional similarity between the two proteins. Competition experiments demonstrated that the repressing forms of HTH or XMeis3 worked as true antimorphs competing with the transcriptional activity of the native form of HTH. We also describe the phenotypic consequences of HTH antimorph activity in derivatives of the wing, labial and genital discs. Some of the described phenotypes, for example, a proboscis-to-leg transformation, were not previously associated with alterations in HTH activity. Observing the ability of HTH antimorphs to interfere with different developmental pathways may direct us to new targets of HTH. The HTH antimorph described in this work presents a new means by which the transcriptional activity of the endogenous HTH protein can be blocked in an inducible fashion in any desired cells or tissues without interfering with nuclear localization of EXD.


Sign in / Sign up

Export Citation Format

Share Document