scholarly journals Author response: Long-term balancing selection drives evolution of immunity genes in Capsella

Author(s):  
Daniel Koenig ◽  
Jörg Hagmann ◽  
Rachel Li ◽  
Felix Bemm ◽  
Tanja Slotte ◽  
...  
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Daniel Koenig ◽  
Jörg Hagmann ◽  
Rachel Li ◽  
Felix Bemm ◽  
Tanja Slotte ◽  
...  

Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.


2018 ◽  
Author(s):  
Daniel Koenig ◽  
Jörg Hagmann ◽  
Rachel Li ◽  
Felix Bemm ◽  
Tanja Slotte ◽  
...  

ABSTRACTGenetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. Our data point to long term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.


2016 ◽  
Vol 33 (6) ◽  
pp. 1435-1447 ◽  
Author(s):  
Cesare de Filippo ◽  
Felix M. Key ◽  
Silvia Ghirotto ◽  
Andrea Benazzo ◽  
Juan R. Meneu ◽  
...  

2021 ◽  
Author(s):  
Emma Berdan ◽  
Alexandre Blanckaert ◽  
Roger K Butlin ◽  
Thomas Flatt ◽  
Tanja Slotte ◽  
...  

Supergenes offer some of the most spectacular examples of long-term balancing selection in nature but their origin and maintenance remain a mystery. A critical aspect of supergenes is reduced recombination between arrangements. Reduced recombination protects adaptive multi-trait phenotypes, but can also lead to degeneration through mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One such outcome is the formation of balanced lethal systems, a maladaptive system where both supergene arrangements have accumulated deleterious mutations to the extent that both homozygotes are inviable, leaving only heterozygotes to reproduce. Here, we perform a simulation study to understand the conditions under which these different outcomes occur, assuming a scenario of introgression after allopatric divergence. We found that AOD aids the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism is easily destabilized by further mutation accumulation. While degradation may strengthen AOD, thereby stabilizing the supergene polymorphism, it is often asymmetric, which is the key disrupter of the quasi-equilibrium state of the polymorphism. Furthermore, mechanisms that accelerate degeneration also tend to amplify asymmetric mutation accumulation between the supergene arrangements and vice versa. As the evolution of a balanced lethal system requires symmetric degradation of both arrangements, this leaves highly restricted conditions under which such a system could evolve. We show that small population size and low dominance coefficients are critical factors, as these reduce the efficacy of selection. The dichotomy between the persistence of a polymorphism and degradation of supergene arrangements likely underlies the rarity of balanced lethal systems in nature.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
M. V. Barbarossa ◽  
M. Polner ◽  
G. Röst

We investigate the temporal evolution of the distribution of immunities in a population, which is determined by various epidemiological, immunological, and demographical phenomena: after a disease outbreak, recovered individuals constitute a large immune population; however, their immunity is waning in the long term and they may become susceptible again. Meanwhile, their immunity can be boosted by repeated exposure to the pathogen, which is linked to the density of infected individuals present in the population. This prolongs the length of their immunity. We consider a mathematical model formulated as a coupled system of ordinary and partial differential equations that connects all these processes and systematically compare a number of boosting assumptions proposed in the literature, showing that different boosting mechanisms lead to very different stationary distributions of the immunity at the endemic steady state. In the situation of periodic disease outbreaks, the waveforms of immunity distributions are studied and visualized. Our results show that there is a possibility to infer the boosting mechanism from the population level immune dynamics.


Neurology ◽  
2017 ◽  
Vol 89 (11) ◽  
pp. 1200.1-1200
Author(s):  
Linard Filli ◽  
Björn Zörner ◽  
Tim Killeen ◽  
Michael Linnebank

2019 ◽  
Author(s):  
Zachary L. Fuller ◽  
Veronique J.L. Mocellin ◽  
Luke Morris ◽  
Neal Cantin ◽  
Jihanne Shepherd ◽  
...  

AbstractAlthough reef-building corals are rapidly declining worldwide, responses to bleaching vary both within and among species. Because these inter-individual differences are partly heritable, they should in principle be predictable from genomic data. Towards that goal, we generated a chromosome-scale genome assembly for the coral Acropora millepora. We then obtained whole genome sequences for 237 phenotyped samples collected at 12 reefs distributed along the Great Barrier Reef, among which we inferred very little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin. We further used 213 of the samples to conduct a genome-wide association study of visual bleaching score, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for the use of genomics-based approaches in conservation strategies.


Sign in / Sign up

Export Citation Format

Share Document