scholarly journals A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Joo Lee ◽  
Caitlin A Taylor ◽  
Kristopher M Barnes ◽  
Ao Shen ◽  
Emerson V Stewart ◽  
...  

Cellular differentiation requires both activation of target cell transcriptional programs and repression of non-target cell programs. The Myt1 family of zinc finger transcription factors contributes to fibroblast to neuron reprogramming in vitro. Here, we show that ztf-11 (Zinc-finger Transcription Factor-11), the sole Caenorhabditis elegans Myt1 homolog, is required for neurogenesis in multiple neuronal lineages from previously differentiated epithelial cells, including a neuron generated by a developmental epithelial-to-neuronal transdifferentiation event. ztf-11 is exclusively expressed in all neuronal precursors with remarkable specificity at single-cell resolution. Loss of ztf-11 leads to upregulation of non-neuronal genes and reduced neurogenesis. Ectopic expression of ztf-11 in epidermal lineages is sufficient to produce additional neurons. ZTF-11 functions together with the MuvB corepressor complex to suppress the activation of non-neuronal genes in neurons. These results dovetail with the ability of Myt1l (Myt1-like) to drive neuronal transdifferentiation in vitro in vertebrate systems. Together, we identified an evolutionarily conserved mechanism to specify neuronal cell fate by repressing non-neuronal genes.

Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5191-5201 ◽  
Author(s):  
V. Dubreuil ◽  
M. Hirsch ◽  
A. Pattyn ◽  
J. Brunet ◽  
C. Goridis

In the vertebrate neural tube, cell cycle exit of neuronal progenitors is accompanied by the expression of transcription factors that define their generic and sub-type specific properties, but how the regulation of cell cycle withdrawal intersects with that of cell fate determination is poorly understood. Here we show by both loss- and gain-of-function experiments that the neuronal-subtype-specific homeodomain transcription factor Phox2b drives progenitor cells to become post-mitotic. In the absence of Phox2b, post-mitotic neuronal precursors are not generated in proper numbers. Conversely, forced expression of Phox2b in the embryonic chick spinal cord drives ventricular zone progenitors to become post-mitotic neurons and to relocate to the mantle layer. In the neurons thus generated, ectopic expression of Phox2b is sufficient to initiate a programme of motor neuronal differentiation characterised by expression of Islet1 and of the cholinergic transmitter phenotype, in line with our previous results showing that Phox2b is an essential determinant of cranial motor neurons. These results suggest that Phox2b coordinates quantitative and qualitative aspects of neurogenesis, thus ensuring that neurons of the correct phenotype are generated in proper numbers at the appropriate times and locations.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3370-3381 ◽  
Author(s):  
Ingrid Saba ◽  
Christian Kosan ◽  
Lothar Vassen ◽  
Tarik Möröy

Abstract T cells originate from early T lineage precursors that have entered the thymus and differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a CD4−CD8− to CD4+CD8+ block causing a strong reduction in thymic cellularity. Miz-1ΔPOZ pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high expression levels of SOCS1 found in Miz-1ΔPOZ cells probably cause these alterations. Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by monitoring the expression levels of SOCS1.


1997 ◽  
Vol 17 (3) ◽  
pp. 1642-1651 ◽  
Author(s):  
M J Weiss ◽  
C Yu ◽  
S H Orkin

The zinc finger transcription factor GATA-1 is essential for erythropoiesis. In its absence, committed erythroid precursors arrest at the proerythroblast stage of development and undergo apoptosis. To study the function of GATA-1 in an erythroid cell environment, we generated an erythroid cell line from in vitro-differentiated GATA-1- murine embryonic stem (ES) cells. These cells, termed G1E for GATA-1- erythroid, proliferate as immature erythroblasts yet complete differentiation upon restoration of GATA-1 function. We used rescue of terminal erythroid maturation in G1E cells as a stringent cellular assay system in which to evaluate the functional relevance of domains of GATA-1 previously characterized in nonhematopoietic cells. At least two major differences were established between domains required in G1E cells and those required in nonhematopoietic cells. First, an obligatory transactivation domain defined in conventional nonhematopoietic cell transfection assays is dispensable for terminal erythroid maturation. Second, the amino (N) zinc finger, which is nonessential for binding to the vast majority of GATA DNA motifs, is strictly required for GATA-1-mediated erythroid differentiation. Our data lead us to propose a model in which a nuclear cofactor(s) interacting with the N-finger facilitates transcriptional action by GATA-1 in erythroid cells. More generally, our experimental approach highlights critical differences in the action of cell-specific transcription proteins in different cellular environments and the power of cell lines derived from genetically modified ES cells to elucidate gene function.


Development ◽  
2000 ◽  
Vol 127 (7) ◽  
pp. 1517-1529 ◽  
Author(s):  
B. Kuang ◽  
S.C. Wu ◽  
Y. Shin ◽  
L. Luo ◽  
P. Kolodziej

split ends (spen) encodes nuclear 600 kDa proteins that contain RNA recognition motifs and a conserved C-terminal sequence. These features define a new protein family, Spen, which includes the vertebrate MINT transcriptional regulator. Zygotic spen mutants affect the growth and guidance of a subset of axons in the Drosophila embryo. Removing maternal and zygotic protein elicits cell-fate and more general axon-guidance defects that are not seen in zygotic mutants. The wrong number of chordotonal neurons and midline cells are generated, and we identify defects in precursor formation and EGF receptor-dependent inductive processes required for cell-fate specification. The number of neuronal precursors is variable in embryos that lack Spen. The levels of Suppressor of Hairless, a key transcriptional effector of Notch required for precursor formation, are reduced, as are the nuclear levels of Yan, a transcriptional repressor that regulates cell fate and proliferation downstream of the EGF receptor. We propose that Spen proteins regulate the expression of key effectors of signaling pathways required to specify neuronal cell fate and morphology.


1993 ◽  
Vol 13 (4) ◽  
pp. 2235-2246
Author(s):  
R J Arceci ◽  
A A King ◽  
M C Simon ◽  
S H Orkin ◽  
D B Wilson

We report the cDNA cloning and characterization of mouse GATA-4, a new member of the family of zinc finger transcription factors that bind a core GATA motif. GATA-4 cDNA was identified by screening a 6.5-day mouse embryo library with oligonucleotide probes corresponding to a highly conserved region of the finger domains. Like other proteins of the family, GATA-4 is approximately 50 kDa in size and contains two zinc finger domains of the form C-X-N-C-(X17)-C-N-X-C. Cotransfection assays in heterologous cells demonstrate that GATA-4 trans activates reporter constructs containing GATA promoter elements. Northern (RNA) analysis and in situ hybridization show that GATA-4 mRNA is expressed in the heart, intestinal epithelium, primitive endoderm, and gonads. Retinoic acid-induced differentiation of mouse F9 cells into visceral or parietal endoderm is accompanied by increased expression of GATA-4 mRNA and protein. In vitro differentiation of embryonic stem cells into embryoid bodies is also associated with increased GATA-4 expression. We conclude that GATA-4 is a tissue-specific, retinoic acid-inducible, and developmentally regulated transcription factor. On the basis of its tissue distribution, we speculate that GATA-4 plays a role in gene expression in the heart, intestinal epithelium, primitive endoderm, and gonads.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
A. Meng ◽  
B. Moore ◽  
H. Tang ◽  
B. Yuan ◽  
S. Lin

The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.


Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 773-788
Author(s):  
Françoise Simon ◽  
Anne Ramat ◽  
Sophie Louvet-Vallée ◽  
Jérôme Lacoste ◽  
Angélique Burg ◽  
...  

Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Veronica Granatiero ◽  
Marco Pacifici ◽  
Anna Raffaello ◽  
Diego De Stefani ◽  
Rosario Rizzuto

Neurodegenerative diseases are a large and heterogeneous group of disorders characterized by selective and progressive death of specific neuronal subtypes. In most of the cases, the pathophysiology is still poorly understood, although a number of hypotheses have been proposed. Among these, dysregulation of Ca2+ homeostasis and mitochondrial dysfunction represent two broadly recognized early events associated with neurodegeneration. However, a direct link between these two hypotheses can be drawn. Mitochondria actively participate to global Ca2+ signaling, and increases of [Ca2+] inside organelle matrix are known to sustain energy production to modulate apoptosis and remodel cytosolic Ca2+ waves. Most importantly, while mitochondrial Ca2+ overload has been proposed as the no-return signal, triggering apoptotic or necrotic neuronal death, until now direct evidences supporting this hypothesis, especially in vivo, are limited. Here, we took advantage of the identification of the mitochondrial Ca2+ uniporter (MCU) and tested whether mitochondrial Ca2+ signaling controls neuronal cell fate. We overexpressed MCU both in vitro, in mouse primary cortical neurons, and in vivo, through stereotaxic injection of MCU-coding adenoviral particles in the brain cortex. We first measured mitochondrial Ca2+ uptake using quantitative genetically encoded Ca2+ probes, and we observed that the overexpression of MCU causes a dramatic increase of mitochondrial Ca2+ uptake both at resting and after membrane depolarization. MCU-mediated mitochondrial Ca2+ overload causes alteration of organelle morphology and dysregulation of global Ca2+ homeostasis. Most importantly, MCU overexpression in vivo is sufficient to trigger gliosis and neuronal loss. Overall, we demonstrated that mitochondrial Ca2+ overload is per se sufficient to cause neuronal cell death both in vitro and in vivo, thus highlighting a potential key step in neurodegeneration.


1993 ◽  
Vol 13 (4) ◽  
pp. 2235-2246 ◽  
Author(s):  
R J Arceci ◽  
A A King ◽  
M C Simon ◽  
S H Orkin ◽  
D B Wilson

We report the cDNA cloning and characterization of mouse GATA-4, a new member of the family of zinc finger transcription factors that bind a core GATA motif. GATA-4 cDNA was identified by screening a 6.5-day mouse embryo library with oligonucleotide probes corresponding to a highly conserved region of the finger domains. Like other proteins of the family, GATA-4 is approximately 50 kDa in size and contains two zinc finger domains of the form C-X-N-C-(X17)-C-N-X-C. Cotransfection assays in heterologous cells demonstrate that GATA-4 trans activates reporter constructs containing GATA promoter elements. Northern (RNA) analysis and in situ hybridization show that GATA-4 mRNA is expressed in the heart, intestinal epithelium, primitive endoderm, and gonads. Retinoic acid-induced differentiation of mouse F9 cells into visceral or parietal endoderm is accompanied by increased expression of GATA-4 mRNA and protein. In vitro differentiation of embryonic stem cells into embryoid bodies is also associated with increased GATA-4 expression. We conclude that GATA-4 is a tissue-specific, retinoic acid-inducible, and developmentally regulated transcription factor. On the basis of its tissue distribution, we speculate that GATA-4 plays a role in gene expression in the heart, intestinal epithelium, primitive endoderm, and gonads.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 818-818
Author(s):  
Rachid Lahlil ◽  
Richard Martin ◽  
Peter D. Aplan ◽  
C. Glenn Begley ◽  
Jacqueline E. Damen ◽  
...  

Abstract Erythroid cell development critically depends on the SCL/Tal1 transcription factor and on erythropoietin signalling. In the present study, we have taken several approaches to show that the two genes operate within the same pathway to consolidate the erythroid lineage. Signaling through the erythropoietin receptor (EpoR) upregulates SCL protein levels in a clonal cell line (TF-1) in vitro, and in murine fetal liver cells in vivo, when Epor−/− cells were compared to those of wild type littermates at E12.5. In addition, we provide functional evidence for a linear pathway from EpoR to SCL that regulates erythropoiesis. Interfering with SCL induction or SCL function prevents the anti-apoptotic effect of Epo in TF-1 cells and conversely, ectopic SCL expression is sufficient to substitute for Epo to transiently maintain cell survival. In vivo, SCL gain of function complements the cellular defects in Epor−/− embryos to support cell survival and maturation during primitive and definitive erythropoiesis, as assessed by cellular and histological analyses of Epor−/− SCLtg embryos. Moreover, several erythroid specific genes that are decreased in Epor−/− embryos are rescued by the SCL transgene including glycophorinA, bH1 and bmaj globin, providing molecular confirmation of the functional and genetic interaction between Epor and SCL. Conversely, erythropoiesis becomes deficient in compound Epor+/−SCL+/− heterozygote mice, indicating that the genetic interaction between EpoR and SCL is synthetic. Finally, using EpoR mutants that harbour well defined signalling deficiencies, combined with gain and loss of function approaches for specific kinases, we identify MAPK as the major signal transduction pathway downstream of EpoR that upregulates SCL function, necessary for erythroid cell survival and differentiation. Taken together, our observations are consistent with the view that cytokines can influence cell fate by altering the dosage of lineage transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document