scholarly journals Modeling the dynamics of Plasmodium falciparum gametocytes in humans during malaria infection

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Pengxing Cao ◽  
Katharine A Collins ◽  
Sophie Zaloumis ◽  
Thanaporn Wattanakul ◽  
Joel Tarning ◽  
...  

Renewed efforts to eliminate malaria have highlighted the potential to interrupt human-to-mosquito transmission — a process mediated by gametocyte kinetics in human hosts. Here we study the in vivo dynamics of Plasmodium falciparum gametocytes by establishing a framework which incorporates improved measurements of parasitemia, a novel gametocyte dynamics model and model fitting using Bayesian hierarchical inference. We found that the model provides an excellent fit to the clinical data from 17 volunteers infected with P. falciparum (3D7 strain) and reliably predicts observed gametocytemia. We estimated the sexual commitment rate and gametocyte sequestration time to be 0.54% (95% credible interval: 0.30–1.00%) per asexual replication cycle and 8.39 (6.54–10.59) days respectively. We used the data-calibrated model to investigate human-to-mosquito transmissibility, providing a method to link within-human host infection kinetics to epidemiological-scale infection and transmission patterns.

2019 ◽  
Author(s):  
Pengxing Cao ◽  
Katharine A. Collins ◽  
Sophie Zaloumis ◽  
Thanaporn Wattanakul ◽  
Joel Tarning ◽  
...  

AbstractEvery year over two hundred million people are infected with the malaria parasite. Renewed efforts to eliminate malaria has highlighted the potential to interrupt transmission from humans to mosquitoes which is mediated through the gametocytes. Reliable prediction of transmission requires an improved understanding of in vivo kinetics of gametocytes. Here we study the population dynamics of Plasmodium falciparum gametocytes in human hosts by establishing a framework which incorporates improved measurements of parasitaemia in humans, a novel mathematical model of gametocyte dynamics, and model validation using a Bayesian hierarchical inference method. We found that the novel mathematical model provides an excellent fit to the available clinical data from 17 volunteers infected with P. falciparum, and reliably predicts observed gametocyte levels. We estimated the P. falciparum’s sexual commitment rate and gametocyte sequestration time in humans to be 0.54% (95% credible interval: 0.30-1.00) per life cycle and 8.39 (6.54-10.59) days respectively. Furthermore, we used the data-calibrated model to predict the effects of those gametocyte dynamics parameters on human-to-mosquito transmissibility, providing a method to link within-human host kinetics of malaria infection to epidemiological-scale infection and transmission patterns.


2018 ◽  
Vol 3 ◽  
pp. 155 ◽  
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use controlled human malaria infection (CHMI) studies with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and extracted DNA will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Francis E. Agamah ◽  
Delesa Damena ◽  
Michelle Skelton ◽  
Anita Ghansah ◽  
Gaston K. Mazandu ◽  
...  

Abstract Background The emergence and spread of malaria drug resistance have resulted in the need to understand disease mechanisms and importantly identify essential targets and potential drug candidates. Malaria infection involves the complex interaction between the host and pathogen, thus, functional interactions between human and Plasmodium falciparum is essential to obtain a holistic view of the genetic architecture of malaria. Several functional interaction studies have extended the understanding of malaria disease and integrating such datasets would provide further insights towards understanding drug resistance and/or genetic resistance/susceptibility, disease pathogenesis, and drug discovery. Methods This study curated and analysed data including pathogen and host selective genes, host and pathogen protein sequence data, protein–protein interaction datasets, and drug data from literature and databases to perform human-host and P. falciparum network-based analysis. An integrative computational framework is presented that was developed and found to be reasonably accurate based on various evaluations, applications, and experimental evidence of outputs produced, from data-driven analysis. Results This approach revealed 8 hub protein targets essential for parasite and human host-directed malaria drug therapy. In a semantic similarity approach, 26 potential repurposable drugs involved in regulating host immune response to inflammatory-driven disorders and/or inhibiting residual malaria infection that can be appropriated for malaria treatment. Further analysis of host–pathogen network shortest paths enabled the prediction of immune-related biological processes and pathways subverted by P. falciparum to increase its within-host survival. Conclusions Host–pathogen network analysis reveals potential drug targets and biological processes and pathways subverted by P. falciparum to enhance its within malaria host survival. The results presented have implications for drug discovery and will inform experimental studies.


2021 ◽  
Author(s):  
Fawad Ali ◽  
Hira Wali ◽  
Saadia Jan ◽  
Muneeba Aslam ◽  
Imtiaz Ahmad ◽  
...  

Abstract Background: Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. P. falciparum is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat.Methods: We retrieved the P. falciparum essential proteins from the recently published studies. Pathogen essential proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analyzed for druggability potential via in silico methods to possibly identify novel therapeutic targets.Results: The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein-protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. Conclusion: The prioritized protein targets may worthy to test in malarial drug discovery program to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010042
Author(s):  
Yevel Flores-Garcia ◽  
Lawrence T. Wang ◽  
Minah Park ◽  
Beejan Asady ◽  
Azza H. Idris ◽  
...  

Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP major repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and major repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fawad Ali ◽  
Hira Wali ◽  
Saadia Jan ◽  
Asad Zia ◽  
Muneeba Aslam ◽  
...  

Abstract Background Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. Falciparum malaria is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat. Methods The P. falciparum essential proteins were retrieved from the recently published studies. These proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analysed for druggability potential via in silico methods to possibly identify novel therapeutic targets. Finally, the PfAp4AH target was prioritized for pharmacophore modelling based virtual screening and molecular docking analyses to identify potent inhibitors from drug-like compounds databases. Results The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not been catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein–protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. The pharmacophore features based virtual screening of Pharmit resource predicted a lead compound i.e. MolPort-045–917-542 as a promising inhibitor of PfAp4AH among prioritized targets. Conclusion The prioritized protein targets may worthy to test in malarial drug discovery programme to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.


1981 ◽  
Author(s):  
E M Essien ◽  
M I Ebhota

We had earlier reported altered ADP-induced platelet aggregation in man during acute malaria infection. The present study sought to determine (i) whether the changes suggested platelet hypersensitivity to ADP and (ii) whether such changes occurred in vivo or in vitro.The aggregation response of platelets (as citrated PRP) to addition of ADP from thirty patients with acute malaria infection has been compared with that of 29 control i.e., non-infected subjects. The age range of the subjects in both groups varied from 2 to 70 years. These tests were performed before the patients took any drugs. With addition of l.0μM ADP to 1 ml of PRP, the mean aggregation amplitude (as % light transmission) obtained from 8 patients, 39.8±27.1% was significantly greater than that from 9 control subjects (5.2±6.7%; t = 3.51; P < 0.005). With higher ADP concentrations (2.4 - 5.0μM) similar response in 22 subjects (mean 89.1±14.9%) was also significantly greater than that in 20 controls (77.8±16.5%; t = 12.45; P < 0.02). These results suggest that during acute malaria infection in man, circulating platelets become hypersensitive to ADP in vitro. No instances of spontaneous aggregation were however observed in the patients.βTG was determined in 7 patients and 6 controls. The mean plasma βTG in the patients (208.3±15.6 ng/ml) was significantly higher than that in controls (59.2±15.7 ng/ml; t = 13.44; P <0.001). These latter results suggest that the platelets were probably activated in vivo to release the βTG. They further suggest that the hypersensitive changes noted earlier also probably occurred in vivo.It is suggested that acute malaria (P.falciparum) infection in man is probably another clinical condition associated with platelet hypersensitivity.


2019 ◽  
Vol 3 ◽  
pp. 155
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


2021 ◽  
Author(s):  
Sheetal Saini ◽  
Rajinder Kumar ◽  
Rajeev K. Tyagi

Plasmodium falciparum, the most devastating human malaria parasite, confers higher morbidity and mortality. Although efforts have been made to develop an effective malaria vaccine, stage- and species-specific short-lived immunity crippled these efforts. Hence, antimalarial drug treatment becomes a mainstay for the treatment of malaria infection in the wake of the unavailability of an effective vaccine. Further, there has been a wide array of antimalarial drugs effective against various developmental stages of P. falciparum due to their different structures, modes of action, and pharmacodynamics as well as pharmacokinetics. The development of resistance against almost all frontline drugs by P. falciparum indicates the need for combination therapy (artemisinin-based combination therapy; ACT) to treat patients with P. falciparum. A higher pool of parasitemia under discontinuous in vivo artemisinin drug pressure in a developed humanized mouse allows the selection of artesunate resistant (ART-R) P. falciparum. Intravenously administered artesunate, using either single flash doses or a 2-day regimen, to the P. falciparum-infected human blood chimeric NOD/SCID.IL-2Rγ−/− immunocompromised (NSG) mice, with progressive dose increments upon parasite recovery, was the strategy deployed to select resistant parasites. Parasite susceptibility to artemisinins and other antimalarial compounds was characterized in vitro and in vivo. P. falciparum has shown to evolve extreme artemisinin resistance as well as co-resistance to antimalarial drugs. Overall, the present information shall be very useful in devising newer therapeutic strategies to treat human malaria infection.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document