scholarly journals A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiao Zhang ◽  
Hero Robles ◽  
Kristann L Magee ◽  
Madelyn R Lorenz ◽  
Zhaohua Wang ◽  
...  

Bone marrow adipocytes accumulate with age and in diverse disease states. However, their origins and adaptations in these conditions remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, by analyzing bone and adipose tissues in the lipodystrophic 'fat-free' mouse, we define a novel, secondary adipogenesis pathway that relies on the recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress in the fat-free mouse model, resulting in the expansion of bone marrow adipocytes specialized for lipid storage with compromised lipid mobilization and cytokine expression within regions traditionally devoted to hematopoiesis. This finding further distinguishes bone marrow from peripheral adipocytes and contributes to our understanding of bone marrow adipocyte origins, adaptation, and relationships with surrounding tissues with age and disease.

2021 ◽  
Author(s):  
Hero Robles ◽  
Xiao Zhang ◽  
Kristann L. Magee ◽  
Madelyn R. Lorenz ◽  
Zhaohua Wang ◽  
...  

SUMMARYBone marrow adipocytes (BMAs) accumulate with age and in diverse disease states. However, their age- and disease-specific origins and adaptations remain unclear, impairing our understanding of their context-specific endocrine functions and relationship with surrounding tissues. In this study, we identified a novel, bone marrow-specific adipogenesis pathway using the AdipoqCre+/DTA+ ‘fat free’ mouse (FF), a model in which Adipoq-Cre drives diphtheria toxin-induced cell death in all adiponectin-expressing cells. Adiponectin is highly expressed by BMAs, peripheral adipocytes, and a subset of bone marrow stromal progenitor cells with preadipocyte-like characteristics. Consistent with this, FF mice presented with uniform depletion of peripheral white and brown adipose tissues, in addition to loss of BMAs in canonical locations such as the tail vertebrae. However, unexpectedly, a distinctly localized subset of BMAs accumulated with age in FF mice in regions such as the femoral and tibial diaphysis that are generally devoid of bone marrow adipose tissue (BMAT). Ectopic BMAs in FF mice were defined by increased lipid storage and decreased expression of cytokines including hematopoietic support factor Cxcl12 and adipokines adiponectin, resistin, and adipsin. FF BMAs also displayed resistance to lipolytic stimuli including cold stress and β3-adrenergic agonist CL316,243. This was associated with reduced expression of adrenergic receptors and monoacylglycerol lipase. Global ablation of adiponectin-expressing cells regulated bone accrual in an age- and sex-dependent manner. High bone mass was present early in life and this was more pronounced in females. However, with age, both male and female FF mice had decreased cortical thickness and mineral content. In addition, unlike BMAs in healthy mice, expansion of ectopic BMAs in FF mice was inversely correlated with cortical bone volume fraction. Subcutaneous fat transplant and normalization of systemic metabolic parameters was sufficient to prevent ectopic BMA expansion in FF mice but did not prevent the initial onset of the high bone mass phenotype. Altogether, this defines a novel, secondary adipogenesis pathway that relies on recruitment of adiponectin-negative stromal progenitors. This pathway is unique to the bone marrow and is activated with age and in states of metabolic stress, resulting in expansion of BMAs specialized for lipid storage with compromised lipid mobilization and endocrine function within regions traditionally devoted to hematopoiesis. Our findings further distinguish BMAT from peripheral adipose tissues and contribute to our understanding of BMA origins and adaptation with age and disease.


2020 ◽  
Vol 21 (14) ◽  
pp. 4967 ◽  
Author(s):  
Eunah Shin ◽  
Ja Seung Koo

The morbidity and mortality of breast cancer is mostly due to a distant metastasis, especially to the bone. Many factors may be responsible for bone metastasis in breast cancer, but interactions between tumor cells and other surrounding types of cells, and cytokines secreted by both, are expected to play the most important role. Bone marrow adipocyte (BMA) is one of the cell types comprising the bone, and adipokine is one of the cytokines secreted by both breast cancer cells and BMAs. These BMAs and adipokines are known to be responsible for cancer progression, and this review is focused on how BMAs and adipokines work in the process of breast cancer bone metastasis. Their potential as suppressive targets for bone metastasis is also explored in this review.


2019 ◽  
Vol 14 (1) ◽  
pp. 60-75
Author(s):  
A. A. Philchenkov

Multiple myeloma originating from clonal proliferation of plasma cells in the bone marrow is one of the most prevalent hematological malignancies worldwide. The pathogenetic mechanisms of multiple myeloma are far from being elucidated. Nevertheless, it is known that the adipocytes as the prevalent cellular component of bone marrow microenvironment contribute significantly to multiple myeloma growth and progression. The review discloses the recent data on the interactions between bone marrow adipocytes and myeloma cells, hematopoietic stemcells, hematopoietic progenitor cells, mesenchimal stem cells, osteoblasts, osteoclasts, endothelial cells, and cells of immune system. Also, the review places special emphasis on bone marrow adipocyte-produced adipokines, growth factors, cytokines, chemokines, and fatty acids providing the conditions for the preferential growth and migration of malignant plasma cells and contributing to hematopoiesis supression, bone tissue resorption, angiogenesis activation and immunosuppression.


2021 ◽  
Vol 22 (10) ◽  
pp. 5288
Author(s):  
Saeyoung Park ◽  
Sung-Chul Jung

Mesenchymal stem cells (MSCs) are multipotent cells derived from various tissues including bone marrow and adipose tissues [...]


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1090
Author(s):  
Ursula Abou-Rjeileh ◽  
G. Andres Contreras

Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.


Sign in / Sign up

Export Citation Format

Share Document