scholarly journals Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kunal Sharma ◽  
Neeraj Dhar ◽  
Vivek V Thacker ◽  
Thomas M Simonet ◽  
Francois Signorino-Gelo ◽  
...  

Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbours of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens.

2021 ◽  
Author(s):  
Kunal Sharma ◽  
Neeraj Dhar ◽  
Vivek V. Thacker ◽  
Thomas Simonet ◽  
François Signorino-Gelo ◽  
...  

AbstractUropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections and is a major cause for antibiotic prescriptions. Previous studies have shown that infection of terminally differentiated urinary bladder cells leads to the formation of intracellular bacterial communities (IBCs). However, the precise role of IBCs in recurrence of infection and antibiotic persistence, is not completely understood in part because the in situ dynamic responses of bacteria within these structures to antibiotic stress is difficult to assess in animal models. Here, we develop and characterize a human bladder-chip model of UPEC infection wherein superficial bladder epithelial cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and the mechanics of bladder filling and voiding cycles mimicked by application and release of linear strain. Time-lapse microscopy showed that infection of epithelial cells under shear stress in diluted urine led to the rapid recruitment and diapedesis of neutrophils across the endothelial-epithelial barrier and the formation of neutrophil swarms and neutrophil extracellular traps. Subsequently, two cycles of antibiotic administration interspersed with recovery periods revealed both non-growing and rapidly proliferating IBCs. Multiple stages of IBC formation captured on-chip with single-cell resolution revealed that that bacterial killing within IBCs was substantially delayed, outcomes such as shedding of bacteria and exfoliation are not mutually exclusive and rapidly reseeded the infection, and in rare instances bacterial growth in IBCs continued for the entire period of antibiotic administration. These new insights into the early stages of pathogenesis revisit the role of IBCs as harbours of persistent bacterial populations, with significant consequences for non-compliance with antibiotic regimens.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Suhanya Duraiswamy ◽  
Jacqueline L. Y. Chee ◽  
Siyi Chen ◽  
Enjun Yang ◽  
Kristin Lees ◽  
...  

ABSTRACTUrinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenicEscherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.


2013 ◽  
Vol 26 (3) ◽  
pp. 321-325

This paper presents a precisely defined question about the role of the biofilm-like intracellular bacterial communities in pathogenesis of the urinary tract infections. According to the recent literature, uropathogenic Escherichia coli is one of the leading etiologic agents of the urinary tract infections. Although E. coli is regarded as an extracellular pathogen, some experiments have revealed a multi-step infection cycle, which involves adhesion, invasion, proliferation within invaded urothelial cell in the form of biofilm-like intracellular bacterial communities and dispersal, leading to infection of next neighbouring cells. Therefore, the prevention and treatment of the urinary tract infections must include intracellular stage of infection.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Matt S. Conover ◽  
Maria Hadjifrangiskou ◽  
Joseph J. Palermo ◽  
Michael E. Hibbing ◽  
Karen W. Dodson ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly,lacZwas highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZstrain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, agalKmutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated geneyeaRrevealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.IMPORTANCEUrinary tract infections (UTIs) are one of the most common bacterial infections, impacting mostly women. Every year, millions of UTIs occur in the U.S. with most being caused by uropathogenicE. coli(UPEC). During a UTI, UPEC invade bladder cells and form an intracellular bacterial community (IBC) that allows for the bacteria to replicate protected from the host immune response. In this study, we investigated genes that are expressed by UPEC within the IBC and determined how they contribute to the formation of this specialized community. Our findings suggest that galactose is important for UPEC growth in the IBC. Additionally, we found that a gene involved in oxidative stress is also important in the regulation of a key factor needed for UPEC invasion of bladder cells. These results may open the door for the development of treatments to diminish UTI frequency and/or severity.


2020 ◽  
Author(s):  
Camille V. Chagneau ◽  
Clémence Massip ◽  
Nadège Bossuet-Greif ◽  
Christophe Fremez ◽  
Jean-Paul Motta ◽  
...  

AbstractUrinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of a metabolite released during the synthesis of colibactin, a bacterial genotoxin, in 50 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells. This bacterial genotoxin, which is increasingly suspected to promote colorectal cancer, should also be scrutinised in the context of bladder cancer.


2021 ◽  
Vol 17 (2) ◽  
pp. e1009310
Author(s):  
Camille V. Chagneau ◽  
Clémence Massip ◽  
Nadège Bossuet-Greif ◽  
Christophe Fremez ◽  
Jean-Paul Motta ◽  
...  

Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.


2020 ◽  
Vol 88 (9) ◽  
Author(s):  
Gregory Iosifidis ◽  
Iain G. Duggin

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections. These bacteria undertake a multistage infection cycle involving invasion of and proliferation within urinary tract epithelial cells, leading to the rupture of the host cell and dispersal of the bacteria, some of which have a highly filamentous morphology. Here, we established a microfluidics-based model of UPEC infection of immortalized human bladder epithelial cells that recapitulates the main stages of bacterial morphological changes during the acute infection cycle in vivo and allows the development and fate of individual cells to be monitored in real time by fluorescence microscopy. The UPEC-infected bladder cells remained alive and mobile in nonconfluent monolayers during the development of intracellular bacterial communities (IBCs). Switching from a flow of growth medium to human urine resulted in immobilization of both uninfected and infected bladder cells. Some IBCs continued to develop and then released many highly filamentous bacteria via an extrusion-like process, whereas other IBCs showed strong UPEC proliferation, and yet no filamentation was detected. The filamentation response was dependent on the weak acidity of human urine and required component(s) in a low molecular-mass (<3,000 Da) fraction from a mildly dehydrated donor. The developmental fate for bacteria therefore appears to be controlled by multiple factors that act at the level of the whole IBC, suggesting that variable local environments or stochastic differentiation pathways influence IBC developmental fates during infection.


2013 ◽  
Vol 68 (3) ◽  
pp. 78-81 ◽  
Author(s):  
Luciana Robino ◽  
Paola Scavone ◽  
Lucia Araujo ◽  
Gabriela Algorta ◽  
Pablo Zunino ◽  
...  

2016 ◽  
Vol 52 (5) ◽  
pp. 297-304 ◽  
Author(s):  
Joseph D. Palamara ◽  
Jennifer J. Bonczynski ◽  
Jason M. Berg ◽  
Philip J. Bergman

ABSTRACT The prevalence of urinary tract infections (UTIs) in dogs with Type I intervertebral disc extrusion has been reported as high as 38% within 6 wk of surgery. Proper treatment of a UTI is important with myelopathy because it is a risk factor for persistent infection and reinfection in dogs. The study authors' investigated the incidence of UTIs in dogs having received either cefovecin or cefazolin as a preoperative prophylactic antibiotic for thoracolumbar hemilaminectomy. Thirty-nine dogs were retrospectively identified and assigned to groups based on preoperative antibiotic administration and postoperative urinary tract management. Urinalysis and urine culture performed preoperatively, at 2 wk, and at 6 wk, were reviewed to determine the incidence of UTIs. Urinary tract management, grade of neurologic deficit, time to ambulation, and time to voluntary urination were identified to evaluate for additional risk factors. No significant prevalence of UTI incidence was appreciated between the cefovecin and cefazolin groups. Patients with higher grades of neurologic deficit and that took longer to regain ambulation and voluntary urination were at significantly greater risk for UTIs throughout the postoperative period. This study reemphasizes the importance of continued surveillance for UTIs in patients with prolonged neurologic recovery.


Sign in / Sign up

Export Citation Format

Share Document