scholarly journals Genetic basis and dual adaptive role of floral pigmentation in sunflowers

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Marco Todesco ◽  
Natalia Bercovich ◽  
Amy Kim ◽  
Ivana Imerovski ◽  
Gregory L Owens ◽  
...  

Variation in floral displays, both between and within species, has been long known to be shaped by the mutualistic interactions that plants establish with their pollinators. However, increasing evidence suggests that abiotic selection pressures influence floral diversity as well. Here, we analyse the genetic and environmental factors that underlie patterns of floral pigmentation in wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye, they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most pollinators. We show that this diversity is largely controlled by cis-regulatory variation affecting a single MYB transcription factor, HaMYB111, through accumulation of ultraviolet (UV)-absorbing flavonol glycosides in ligules (the ‘petals’ of sunflower inflorescences). Different patterns of ultraviolet pigments in flowers are strongly correlated with pollinator preferences. Furthermore, variation for floral ultraviolet patterns is associated with environmental variables, especially relative humidity, across populations of wild sunflowers. Ligules with larger ultraviolet patterns, which are found in drier environments, show increased resistance to desiccation, suggesting a role in reducing water loss. The dual role of floral UV patterns in pollinator attraction and abiotic response reveals the complex adaptive balance underlying the evolution of floral traits.

2021 ◽  
Author(s):  
Marco Todesco ◽  
Natalia Bercovich ◽  
Amy Kim ◽  
Ivana Imerovski ◽  
Gregory L Owens ◽  
...  

Variation in floral displays, both between and within species, has been long known to be shaped by the mutualistic interactions that plants establish with their pollinators. However, increasing evidence suggests that abiotic selection pressures influence floral diversity as well. Here we analyze the genetic and environmental factors that underlie patterns of floral pigmentation in wild sunflowers. While sunflower inflorescences appear invariably yellow to the human eye, they display extreme diversity for patterns of ultraviolet pigmentation, which are visible to most pollinators. We show that this diversity is largely controlled by cis-regulatory variation at a single MYB transcription factor, HaMYB111, through accumulation of UV-absorbing flavonol glycosides. As expected, different patterns of ultraviolet pigments in flowers have a strong effect on pollinator preferences. However, variation for floral ultraviolet patterns is also associated with environmental variables, especially relative humidity, across populations of wild sunflowers. Larger ultraviolet patterns, which are found in drier environments, limit transpiration, therefore reducing water loss. The dual role of floral UV patterns in pollination attraction and abiotic responses reveals the complex adaptive balance underlying the evolution of floral traits.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1257
Author(s):  
Marco Dadda ◽  
Veronica Vendramin ◽  
Christian Agrillo

The role of genetic and environmental factors in modulating the development of brain lateralization is far from being fully understood, and the presence of individual differences in several lateralized functions is still an open question. In goldbelly topminnows, the genetic basis of asymmetrical functions in the brain has been studied, and recently it has been found that light stimulation influences the expression of lateralization of newborns. Here, we investigated whether prenatal exposure to predators affects the development of lateralization in 10-day-old topminnows born from females exposed to a real or to a simulated predator during pregnancy. Offspring from females exposed to a real predator were lateralized in both visual and motor tests, whereas fish from females exposed to a simulated predator were not and did not differ from controls. Prenatal exposure to a real predator might promote the alignment of lateralization in the same direction in different individuals.


2017 ◽  
Vol 4 ◽  
pp. 1-14
Author(s):  
Paolo Pupillo ◽  
Giovanni Astuti

Relationships between age, time of emergence, and leaf traits of individuals were investigated in a population of Erythroniumdens-canis L. in a hilly woodland area named Farneto-C, near Bologna, Italy. In 2015, 591 individuals were counted, 19 of which were flowering (FLO), 442 were mature non-flowering (MNF) and 130 were juveniles (JUV). FLO emerged at the end of February, whereas most MNF and JUV appeared at the middle and end of March, respectively. The mean aboveground survivorship of MNF was 24 days. Most MNF had large, oval to shield-shaped leaves with red-brown mottling, whereas most JUV leaves were smaller, usually oblong or lanceolate with a rough maculation or none. These results suggest that both timing of emergence and leaf shape are related to the age of the bulb. Based on leaf background, plants were classified into three major types with a likely genetic basis in the 2015 and 2016 surveys (the latter limited to FLO): a dominant silvery type (SLV, 62–74%), silvery-and-green type (S&G, 23–32%), and a less frequent vivid-green type (GRN, 3–5%). Several subtypes were also identified, but only one was dominant within each type. The three basic patterns appear to be phenotypically stable and no differences between MNF and FLO were found; once the juvenile stage has passed, each plant produces the same leaf type year after year. In addition, our results on the discoloration time-course of red-brown spots suggest that the functional role of leaf mottling is not related to pollinator attraction. Instead, leaf mottling could play a role in camouflage against herbivores.The observed massive grazing on flowers, more than leaves, could explain why the frequency of mature individuals was biased towards the non-flowering ones.


Author(s):  
Deirdre O'Sullivan ◽  
Michael Moore ◽  
Susan Byrne ◽  
Andreas O. Reiff ◽  
Susanna Felsenstein

AbstractAcute disseminated encephalomyelitis in association with extensive longitudinal transverse myelitis is reported in a young child with positive anti-myelin oligodendrocyte glycoprotein (MOG) antibody with heterozygous NLRP3 missense mutations; p.(Arg488Lys) and p.(Ser159Ile). This case may well present an exceptional coincidence, but may describe a yet unrecognized feature of the spectrum of childhood onset cryopyrinopathies that contribute to the understanding of the genetic basis for anti-MOG antibody positive encephalomyelitis. Based on this observation, a larger scale study investigating the role of NLRP3 and other inflammasomes in this entity would provide important pathophysiological insights and potentially novel avenues for treatment.


2018 ◽  
Vol 54 (6) ◽  
pp. 78-93
Author(s):  
V. V. Grubinko ◽  
O. I. Bodnar ◽  
A. I. Lutsiv ◽  
G. B. Viniarska
Keyword(s):  

2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


Author(s):  
Elisa M. Trucco ◽  
Gabriel L. Schlomer ◽  
Brian M. Hicks

Approximately 48–66% of the variation in alcohol use disorders is heritable. This chapter provides an overview of the genetic influences that contribute to alcohol use disorder within a developmental perspective. Namely, risk for problematic alcohol use is framed as a function of age-related changes in the relative contribution of genetic and environmental factors and an end state of developmental processes. This chapter discusses the role of development in the association between genes and the environment on risk for alcohol use disorder. Designs used to identify genetic factors relevant to problematic alcohol use are discussed. Studies examining developmental pathways to alcohol use disorder with a focus on endophenotypes and intermediate phenotypes are reviewed. Finally, areas for further investigation are offered.


2016 ◽  
Vol 33 (S1) ◽  
pp. S307-S307
Author(s):  
M. Manea ◽  
B. Savu

IntroductionIt is well known that certain personality traits are more linked to drug abuse than others. Psychiatrists are more likely to emphasize the importance of impulsivity in the connection with substance disorders but in the following study we found an important percentage of patients that have a substance abuse were linked to anxiety through impulsiveness as a personality trait.ObjectivesMost youths admitted for a substance abuse are highly impulsive. Our quest was to differentiate what component of impulsivity was more frequently linked to a substance use disorder.MethodsIn the study were included 50 patients admitted in the 3rd Psychiatric Clinic, Substance Dependences Department, Cluj-Napoca. For the identification of the drug abused we used the multitest screening kit in correlation with the results from the Forensic Medicine Institute of Cluj-Napoca. Each patient completed the Barratt Impulsivity Scale and the Swedish Universities Scales of Personality.ResultsHigh scores on BIS-11 strongly correlated with attentional impulsiveness (Pearson's r correlation = .838) which means high inattention and cognitive instability this being linked with anxiety disorders. Cognitive Instability was correlated with Psychic Trait Anxiety (r = 0.29) and Motor Impulsiveness with Somatic Trait Anxiety (r = 0.3). Normal 0 false false false EN-US X-NONE X-NONE.ConclusionsThe underrecognized anxiety disorders in young adults whom are admitted for an addictive disorder prefrontal cortex is known to be the source of both impulsivity and could be linked to anxiety as well (valence asymmetry hypothesis). Normal 0 false false false EN-US X-NONE X-NONE.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Sign in / Sign up

Export Citation Format

Share Document