scholarly journals Deposition of growth layer groups in dentine tissue of captive common dolphins Delphinus delphis

2014 ◽  
Vol 8 ◽  
Author(s):  
Sinéad Murphy ◽  
Matthew Perrott ◽  
Jill McVee ◽  
Fiona L Read ◽  
Karin A Stockin

Knowledge of age structure and longevity (maximum age) are essential for modelling marine mammal population dynamics. Estimation of age in common dolphins (Delphinus spp.) is primarily based on counting Growth Layer Groups (GLGs) in the dentine of thin, decalcified and stained sections of teeth. An annual incremental deposition rate was validated for Delphinus spp. 30-years ago through the use of tetracycline. However, it is not known if the pulp cavity becomes occluded in older individuals or GLGs continue to be deposited in dentine tissue. To investigate the deposition of GLGs in dentine tissue, teeth samples were obtained during the necropsies of two short-beaked common dolphins (Delphinus delphis) that were held in captivity for 31 and 33 years in New Zealand. Individuals were captured together in Hawkes Bay, North Island, New Zealand and classified as juveniles based on physical appearance. Teeth were processed in two ageing laboratories, using four different bone decalcifiers, two sectioning techniques incorporating the use of both a freezing microtome (-20°C) and paraffin microtome, and two different stains. An age was estimated for one of the dolphins, in line with that proposed based on estimated age at capture and period in captivity. However, a hypomineralised area was observed in the dentine tissue close to the pulp cavity of the second individual, preventing estimation of maximum age. The presence and structure of this anomaly is explored further within the study. 

2021 ◽  
Vol 173 ◽  
pp. 113084
Author(s):  
Karen A. Stockin ◽  
Olga Pantos ◽  
Emma L. Betty ◽  
Matthew D.M. Pawley ◽  
Fraser Doake ◽  
...  

2021 ◽  
Author(s):  
◽  
Christopher McDowall

<p>Demographic heterogeneity can have big effects on population dynamics, but for most species we have limited understanding of how and why individuals vary. Variation among individuals is of particular importance for stage-structured populations, and/or where species have ‘complex life-cycles’. This is especially relevant in the case of amphidromous fishes that typically spawn in river mouths and estuaries, develop at sea and return to freshwater to finish development. These fish face strong selection pressures as they negotiate challenges around dispersal and development in order to reproduce successfully. Quantifying variation amongst individual fish can improve understanding of their population dynamics and suggest possible drivers of variation.  I evaluate patterns and sources of variation in demographic attributes of the New Zealand smelt (Retropinna retropinna). R. retropinna is an amphidromous fish that is endemic to New Zealand. While most populations have a sea-going larval stage, a number of landlocked freshwater populations occur, with the largest landlocked population residing in Lake Taupo. Here R. retropinna are presented with a variety of littoral feeding/spawning habitats and environmental conditions that may vary across distinct regions of the lake. In addition, the protracted spawning period for this species in Lake Taupo (occurring over eight months of the year) provides additional scope for seasonal variation to influence demographic attributes of individuals.  I sampled R. retropinna from discrete coastal habitats (beach or river) that were located in the eastern, southern and western regions of the lake. I evaluated patterns of variation in the size-structure, age-structure and morphology of R. retropinna among habitats and/or regions across Lake Taupo. I used otoliths to reconstruct demographic histories (ages, growth rates, hatch dates) of individuals, and used a set of statistical models to infer spatial variation in demographic histories. I found differences in size and age structure between regions, and a temporal effect of hatch date on larval/juvenile growth rates.  In addition, I obtained samples of R. retropinna from a sea-going population at the Hutt river mouth (sampled fish were presumed to be migrating upstream after their development period in Wellington Harbour and/or adjacent coastal environments). While Lake Taupo is large, deep, fresh, oligotrophic and strongly stratified for 8-9 months outside of winter, Wellington Harbour is less than a sixth of the area, shallow, saline, eutrophic and never stratified. These greatly differing environmental conditions led me to expect that these systems’ R. retropinna populations would carry significantly different demographic attributes. I compared the hatching phenology, recruitment age, body morphology, and individual growth histories (reconstructed from otoliths) of R. retropinna sampled from Lake Taupo and Wellington Harbour. I explored the relationships between demographic variation and environmental variation (water temperature, chlorophyll a) for the two systems and found that this additional environmental information could account for much of the seasonal variation in daily otolith increment widths of R. retropinna. My results also suggest that while the two sampled populations likely share similar hatching and spawning phenologies, individuals from Lake Taupo tend to grow more slowly, particularly during winter, and end up smaller than sea-going fish sampled near Wellington. I speculate that these differences reflect variation in food supply (zooplankton may be limited in Lake Taupo over winter).  Overall, my results demonstrate a high degree of variation in morphological and life-history traits within a single species, potentially driven by an interaction between environmental variation and timing of development. My work contributes to a growing body of literature on demographic heterogeneity, and may help to inform the management of landlocked populations of R. retropinna in Lake Taupo.</p>


2003 ◽  
Vol 29 (1) ◽  
pp. 137-149 ◽  
Author(s):  
Dirk R. Neumann ◽  
Mark B. Orams

2020 ◽  
Vol 652 ◽  
pp. 173-186
Author(s):  
KJ Peters ◽  
SJ Bury ◽  
EL Betty ◽  
GJ Parra ◽  
G Tezanos-Pinto ◽  
...  

Dolphins are among the largest and most diverse predators in marine ecosystems, but our understanding of their foraging ecology, which is crucial for ecosystem management, is poor. Delphinus delphis (common dolphins) are found in tropical and temperate waters globally. Stomach content studies indicate they are opportunistic predators that feed locally on abundant small pelagic schooling fish, but information is lacking on how their diet may vary seasonally and with ontogeny. We investigated effects of body length, sex, season, and year on D. delphis diet in the Hauraki Gulf, New Zealand, using carbon (δ13C) and nitrogen (δ15N) stable isotope analysis of 56 skin samples collected during 13 years (2004-2016). Dolphin δ15N values changed with body length, suggesting ontogenetic dietary variation. Nitrogen isotope values were higher in austral autumn/winter compared to spring/summer, whilst δ13C values decreased throughout the study period, suggesting temporal changes in primary productivity likely affecting the dolphins’ diet. Sex had a minor effect on dolphin δ13C values, with male and female isotopic niches overlapping by 62.6% and 45.2% (respectively). Our results provide a baseline for detecting future changes in the trophic ecology of D. delphis in a key habitat in New Zealand and highlight their role as a sentinel species in this coastal ecosystem.


2004 ◽  
Vol 31 (2) ◽  
pp. 177 ◽  
Author(s):  
S. Childerhouse ◽  
G. Dickie ◽  
G. Hessel

Live New Zealand sea lions (Phocarctos hookeri) were aged from growth layer groups (GLGs) in the cementum of a lower first post-canine tooth. A single post-canine (PC1) was removed from individuals of known-age (n = 74) between 1997 and 2001 while under a full anaesthetic. Teeth were decalcified, sectioned on a cryostat, stained and then mounted on glass slides. Age was estimated by counting GLGs in the cementum multiple times. Age estimates were calibrated with known-aged individuals and confirmed the annual formation of cementum annuli in PC1 tooth. While there is some variation in assigning exact age to individuals, it was possible to age 94% of teeth to the exact year or to within 1 year of actual age. There was no significant difference in the slope of regression lines associated with actual and estimated age using this technique (t-test, t = 0.309, d.f. = 144, P < 0.05). Accuracy in ageing was improved by discarding sets of readings with low precision and re-reading the tooth until a precise set of estimates was made. GLGs in the cementum were more accurate and robust for age estimation than using GLGs in the dentine. This paper describes a reliable method for the preparation and ageing of the first post-canine tooth (PC1) from live New Zealand sea lions.


2021 ◽  
Author(s):  
◽  
Christopher McDowall

<p>Demographic heterogeneity can have big effects on population dynamics, but for most species we have limited understanding of how and why individuals vary. Variation among individuals is of particular importance for stage-structured populations, and/or where species have ‘complex life-cycles’. This is especially relevant in the case of amphidromous fishes that typically spawn in river mouths and estuaries, develop at sea and return to freshwater to finish development. These fish face strong selection pressures as they negotiate challenges around dispersal and development in order to reproduce successfully. Quantifying variation amongst individual fish can improve understanding of their population dynamics and suggest possible drivers of variation.  I evaluate patterns and sources of variation in demographic attributes of the New Zealand smelt (Retropinna retropinna). R. retropinna is an amphidromous fish that is endemic to New Zealand. While most populations have a sea-going larval stage, a number of landlocked freshwater populations occur, with the largest landlocked population residing in Lake Taupo. Here R. retropinna are presented with a variety of littoral feeding/spawning habitats and environmental conditions that may vary across distinct regions of the lake. In addition, the protracted spawning period for this species in Lake Taupo (occurring over eight months of the year) provides additional scope for seasonal variation to influence demographic attributes of individuals.  I sampled R. retropinna from discrete coastal habitats (beach or river) that were located in the eastern, southern and western regions of the lake. I evaluated patterns of variation in the size-structure, age-structure and morphology of R. retropinna among habitats and/or regions across Lake Taupo. I used otoliths to reconstruct demographic histories (ages, growth rates, hatch dates) of individuals, and used a set of statistical models to infer spatial variation in demographic histories. I found differences in size and age structure between regions, and a temporal effect of hatch date on larval/juvenile growth rates.  In addition, I obtained samples of R. retropinna from a sea-going population at the Hutt river mouth (sampled fish were presumed to be migrating upstream after their development period in Wellington Harbour and/or adjacent coastal environments). While Lake Taupo is large, deep, fresh, oligotrophic and strongly stratified for 8-9 months outside of winter, Wellington Harbour is less than a sixth of the area, shallow, saline, eutrophic and never stratified. These greatly differing environmental conditions led me to expect that these systems’ R. retropinna populations would carry significantly different demographic attributes. I compared the hatching phenology, recruitment age, body morphology, and individual growth histories (reconstructed from otoliths) of R. retropinna sampled from Lake Taupo and Wellington Harbour. I explored the relationships between demographic variation and environmental variation (water temperature, chlorophyll a) for the two systems and found that this additional environmental information could account for much of the seasonal variation in daily otolith increment widths of R. retropinna. My results also suggest that while the two sampled populations likely share similar hatching and spawning phenologies, individuals from Lake Taupo tend to grow more slowly, particularly during winter, and end up smaller than sea-going fish sampled near Wellington. I speculate that these differences reflect variation in food supply (zooplankton may be limited in Lake Taupo over winter).  Overall, my results demonstrate a high degree of variation in morphological and life-history traits within a single species, potentially driven by an interaction between environmental variation and timing of development. My work contributes to a growing body of literature on demographic heterogeneity, and may help to inform the management of landlocked populations of R. retropinna in Lake Taupo.</p>


Sign in / Sign up

Export Citation Format

Share Document