Millimeter-wave AlGaN/GaN HEMT breakdown voltage enhancement by a recessed float field plate

2019 ◽  
Vol 12 (5) ◽  
pp. 054007 ◽  
Author(s):  
Sheng Zhang ◽  
Ke Wei ◽  
Xiaohua Ma ◽  
Yi Chuan Zhang ◽  
Tianmin Lei
2013 ◽  
Vol 805-806 ◽  
pp. 948-953
Author(s):  
Cen Kong ◽  
Jian Jun Zhou ◽  
Jin Yu Ni ◽  
Yue Chan Kong ◽  
Tang Sheng Chen

GaN high electronic mobility transistor (HEMT) was fabricated on silicon substrate. A breakdown voltage of 800V was obtained without using field plate technology. The fabrication processes were compatible with the conventional GaN HEMTs fabrication processes. The length between drain and gate (Lgd) has a greater impact on breakdown voltage of the device. A breakdown voltage of 800V with maximum current density of 536 mA/mm was obtained while Lgd was 15μm and the Wg was 100μm. The specific on-state resistance of this devices was 1.75 mΩ·cm2, which was 85 times lower than that of silicon MOSFET with same breakdown voltage. The results establish the foundation of low cost GaN HEMT power electronic devices.


2019 ◽  
Vol 160 ◽  
pp. 107629 ◽  
Author(s):  
S. Zhang ◽  
K. Wei ◽  
X.H. Ma ◽  
Y.C. Zhang ◽  
M. Asif ◽  
...  

2003 ◽  
Author(s):  
Wataru Saito ◽  
Yoshiharu Takada ◽  
Masahiko Kuraguchi ◽  
Kunio Tsuda ◽  
Ichiro Omura ◽  
...  

2018 ◽  
Vol 68 (3) ◽  
pp. 290 ◽  
Author(s):  
Mr Amit ◽  
Dipendra Singh Rawal ◽  
Sunil Sharma ◽  
Sonalee Kapoor ◽  
Robert Liashram ◽  
...  

The design and fabrication of gate/source connected multi-finger field plate structures using TCAD ATLAS simulation software is presented. The designed field plate structures are fabricated on indigenous AlGaN/GaN HEMT devices. AlGaN/GaN HEMT devices with field plate structures exhibit about three times improvement in breakdown voltage of device and are in close agreement with the simulation results. Integration of field plates in device have resulted in higher VDS (drain to source voltage) operation and improvement in output power of AlGaN/GaN HEMT devices. Incorporation of field plates also decrease the reverse leakage current of HEMT devices.


Author(s):  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Nathalie Labat ◽  
Nathalie Malbert ◽  
Arnaud Curutchet ◽  
...  

Abstract To improve the long-term stability of AlGaN/GaN HEMTs, the reduction of gate and drain leakage currents and electrical anomalies at pinch-off is required. As electron transport in these devices is both coupled with traps or surface states interactions and with polarization effects, the identification and localization of the preeminent leakage path is still challenging. This paper demonstrates that thermal laser stimulation (TLS) analysis (OBIRCh, TIVA, XIVA) performed on the die surface are efficient to localize leakage paths in GaN based HEMTs. The first part details specific parameters, such as laser scan speed, scan direction, wavelength, and laser power applied for leakage gate current paths identification. It compares results obtained with Visible_NIR electroluminescence analysis with the ones obtained by the TLS techniques on GaN HEMT structures. The second part describes some failure analysis case studies of AlGaN/GaN HEMT with field plate structure which were successful, thanks to the OBIRCh technique.


2013 ◽  
Vol 347-350 ◽  
pp. 1535-1539
Author(s):  
Jian Jun Zhou ◽  
Liang Li ◽  
Hai Yan Lu ◽  
Ceng Kong ◽  
Yue Chan Kong ◽  
...  

In this letter, a high breakdown voltage GaN HEMT device fabricated on semi-insulating self-standing GaN substrate is presented. High quality AlGaN/GaN epilayer was grown on self-standing GaN substrate by metal organic chemical vapor deposition. A 0.8μm gate length GaN HEMT device was fabricated with oxygen plasma treatment. By using oxygen plasma treatment, gate forward working voltage is increased, and a breakdown voltage of more than 170V is demonstrated. The measured maximum drain current of the device is larger than 700 mA/mm at 4V gate bias voltage. The maximum transconductance of the device is 162 mS/mm. In addition, high frequency performance of the GaN HEMT device is also obtained. The current gain cutoff frequency and power gain cutoff frequency are 19.7 GHz and 32.8 GHz, respectively. A high fT-LG product of 15.76 GHzμm indicating that homoepitaxy technology is helpful to improve the frequency performance of the device.


Sign in / Sign up

Export Citation Format

Share Document