Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review

2020 ◽  
Vol 8 (2) ◽  
pp. 168-199 ◽  
Author(s):  
Liqun Ma ◽  
Zichen Zhang ◽  
Linyue Gao ◽  
Yang Liu ◽  
Hui Hu

A critical review is provided to summarize our recent efforts to utilize the state-of-the-art bio-inspired icephobic coatings/surfaces, i.e., 1). Lotus-leaf-inspired superhydrophobic surfaces (SHS) and 2). Pitcher-plant-inspired slippery liquid-infused porous surfaces (SLIPS) for aircraft icing mitigation. By leveraging the unique Icing Research Tunnel of Iowa State University (i.e., ISU-IRT), an experimental campaign was performed to evaluate the effectiveness of using SHS and SLIPS coatings to suppress impact ice accretion over the surfaces of typical airfoil/wing models. While both SHS and SLIPS were found to be able to suppress ice accretion over the airframe surfaces where strong aerodynamic forces are exerted, ice was still found to accrete in the vicinity of the airfoil stagnation line where the aerodynamic forces are at their minimum. A novel hybrid anti-/de-icing strategy concept to combine icephobic coatings with minimized surface heating near airfoil leading edge was demonstrated to effectively remove impact ice accretion over entire airfoil/wing surfaces. An experimental investigation was also conducted to examine the durability of the icephobic coatings/surfaces to resist "rain erosion" effects (i.e., the damage to the surface coatings due to continuous impingement of water droplets at high speeds) in considering the practical usage for aircraft icing mitigation. The rain erosion effects were characterized based on the variations of the ice adhesion strengths and surface morphology of the eroded test surfaces coated with SHS and SLIPS. The research findings are very helpful to elucidate the underlying physics for the development of novel and robust anti-/de-icing strategies for aircraft icing mitigation.

2012 ◽  
Vol 249-250 ◽  
pp. 40-45
Author(s):  
Bo An ◽  
Wei Min Sang

Aircraft icing cause significant degradation in aerodynamics performance and flight safety. Numerical methods are developed and presented to simulate two icing-related problems for airfoils, namely ice accretion and icing effects. Ice accretion on the leading edge of the NACA 0012 airfoil is predicted using CFD method based on spring analogy. A four-order Runge-Kutta method is used to solve the droplet trajectory equation. Besides, we use the integral form of Navier-Stokes equations and the Spalart-Allmaras turbulence model to study the icing effects. Designing three different icing models, the flow fields are analyzed. The results are in good agreement with the experimental data and show preliminarily that numerical method is feasible and effective.


Author(s):  
Thomas E. Dyson ◽  
Dave G. Bogard ◽  
Justin D. Piggush ◽  
Atul Kohli

Overall effectiveness, φ, for a simulated turbine blade leading edge was experimentally measured using a model constructed with a relatively high conductivity material selected so that the Biot number of the model matched engine conditions. The model incorporated three rows of cylindrical holes with the center row positioned on the stagnation line. Internally the model used an impingement cooling configuration. Overall effectiveness was measured for pitch variation from 7.6d to 9.6d for blowing ratios ranging from 0.5 to 3.0, and angle of attack from −7.7° to +7.7°. Performance was evaluated for operation with a constant overall mass flow rate of coolant. Consequently when increasing the pitch, the blowing ratio was increased proportionally. The increased blowing ratio resulted in increased impingement cooling internally and increased convective cooling through the holes. The increased internal and convective cooling compensated, to a degree, for the decreased coolant coverage with increased pitch. Performance was evaluated in terms of laterally averaged φ, but also in terms of the minimum φ. The minimum φ evaluation revealed localized hot spots which are arguably more critical to turbine blade durability than the laterally averaged results. For small increases in pitch there was negligible decrease in performance.


2021 ◽  
Vol 9 (5) ◽  
pp. 481
Author(s):  
Azim Hosseini ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Prasanta K. Sahoo ◽  
Mihkel Kõrgesaar

This paper presents CFD (Computational Fluid Dynamics) simulations of the performance of a planing hull in a calm-water condition, aiming to evaluate similarities and differences between results of different CFD models. The key differences between these models are the ways they use to compute the turbulent flow and simulate the motion of the vessel. The planing motion of a vessel on water leads to a strong turbulent fluid flow motion, and the movement of the vessel from its initial position can be relatively significant, which makes the simulation of the problem challenging. Two different frameworks including k-ε and DES (Detached Eddy Simulation) methods are employed to model the turbulence behavior of the fluid motion of the air–water flow around the boat. Vertical motions of the rigid solid body in the fluid domain, which eventually converge to steady linear and angular displacements, are numerically modeled by using two approaches, including morphing and overset techniques. All simulations are performed with a similar mesh structure which allows us to evaluate the differences between results of the applied mesh motions in terms of computation of turbulent air–water flow around the vessel. Through quantitative comparisons, the morphing technique has been seen to result in smaller errors in the prediction of the running trim angle at high speeds. Numerical observations suggest that a DES model can modify the accuracy of the morphing mesh simulations in the prediction of the trim angle, especially at high-speeds. The DES model has been seen to increase the accuracy of the model in the computation of the resistance of the vessel in a high-speed operation, as well. This better level of accuracy in the prediction of resistance is a result of the calculation of the turbulent eddies emerging in the water flow in the downstream zone, which are not captured when a k-ε framework is employed. The morphing approach itself can also increase the accuracy of the resistance prediction. The overset method, however, overpredicts the resistance force. This overprediction is caused by the larger vorticity, computed in the direction of the waves, generated under the bow of the vessel. Furthermore, the overset technique is observed to result in larger hydrodynamic pressure on the stagnation line, which is linked to the greater trim angle, predicted by this approach. The DES model is seen to result in extra-damping of the second and third crests of transom waves as it calculates the stronger eddies in the wake of the boat. Overall, a combination of the morphing and DES models is recommended to be used for CFD modeling of a planing hull at high-speeds. This combined CFD model might be relatively slower in terms of computational time, but it provides a greater level of accuracy in the performance prediction, and can predict the energy damping, developed in the surrounding water. Finally, the results of the present paper demonstrate that a better level of accuracy in the performance prediction of the vessel might also be achieved when an overset mesh motion is used. This can be attained in future by modifying the mesh structure in such a way that vorticity is not overpredicted and the generated eddies, emerging when a DES model is employed, are captured properly.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 681
Author(s):  
David Nash ◽  
Grant Leishman ◽  
Cameron Mackie ◽  
Kirsten Dyer ◽  
Liu Yang

The current wind turbine leading-edge erosion research focuses on the end of the incubation period and breakthrough when analysing the erosion mechanism. This work presented here shows the benefits of splitting and describing leading-edge erosion progression into discrete stages. The five identified stages are: (1) an undamaged, as-new, sample; (2) between the undamaged sample and end of incubation; (3) the end of incubation period; (4) between the end of incubation and breakthrough, and (5) breakthrough. Mass loss, microscopy and X-ray computed tomography were investigated at each of the five stages. From this analysis, it was observed that notable changes were detected at Stages 2 and 4, which are not usually considered separately. The staged approach to rain erosion testing offers a more thorough understanding of how the coating system changes and ultimately fails due to rain droplet impacts. It is observed that during microscopy and X-ray computed tomography, changes unobservable to the naked eye can be tracked using the staged approach.


Author(s):  
Zhenxia Liu ◽  
Fei Zhang ◽  
Zhengang Liu

The deposition of liquid particles, which may be converted from solid particles due to high temperature gas heating, makes much more harm on turbine vane blades compared to solid particles, since it may block film-cooling holes, worsen the cooling efficiency and aerodynamic performance of the turbine vane blades. Due to the similarity between the deposition of liquid particles on a surface and the icing on a surface, a numerical model for simulating particles deposition was developed based on the Myers icing model, an extension of the Messinger model, which has been applied in predicting aircraft icing or aero-engine icing. Compared to the conventional liquid particle deposition model, the numerical model in this paper considers the heat transfer and the flow of liquid particles during the particles phase transition from liquid state to solid state. In this model, the change of the surface profile due to the particles deposition was also considered, which was implemented with dynamic mesh technique. To test this model, deposition distribution and thickness obtained from the numerical simulations were compared to the experimental results. Additionally, a numerical simulation was conducted for liquid particle deposition on a flat plate. The result showed that the deposition thickness at the leading edge was much larger than that on the upper surface where the deposition appeared mainly at the middle and rear of the plate. The deposition mass and thickness increased with the increasing in the particle size. The effect of the particle size on the deposition thickness was more notable on the upper surface compared to that at the leading edge.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio and blowing ratio are studied. Computational simulations are performed using the realizable k-ε turbulence model. Effectiveness obtained by CFD simulations are compared with experiments. Three leading edge profiles, including one semi-cylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semi-cylinder model, shaped holes are located at 0 degrees (stagnation line) and ± 30 degrees. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,900 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile and on turbine blade leading edge region film cooling with shaped-hole designs.


2018 ◽  
Vol 72 ◽  
pp. 01007 ◽  
Author(s):  
Faizan Afzal ◽  
Muhammad S. Virk

This paper describes a brief overview of main issues related to atmospheric ice accretion on wind turbines installed in cold climate region. Icing has significant effects on wind turbine performance particularly from aerodynamic and structural integrity perspective, as ice accumulates mainly on the leading edge of the blades that change its aerodynamic profile shape and effects its structural dynamics due to added mass effects of ice. This research aims to provide an overview and develop further understanding of the effects of atmospheric ice accretion on wind turbine blades. One of the operational challenges of the wind turbine blade operation in icing condition is also to overcome the process of ice shedding, which may happen due to vibrations or bending of the blades. Ice shedding is dangerous phenomenon, hazardous for equipment and personnel in the immediate area.


Author(s):  
Ross Johnson ◽  
Jonathan Maikell ◽  
David Bogard ◽  
Justin Piggush ◽  
Atul Kohli ◽  
...  

When a turbine blade passes through wakes from upstream vanes it is subjected to an oscillation of the direction of the approach flow resulting in the oscillation of the position of the stagnation line on the leading edge of the blade. In this study an experimental facility was developed that induced a similar oscillation of the stagnation line position on a simulated turbine blade leading edge. The overall effectiveness was evaluated at various blowing ratios and stagnation line oscillation frequencies. The location of the stagnation line on the leading edge was oscillated to simulate a change in angle of attack between α = ± 5° at a range of frequencies from 2 to 20 Hz. These frequencies were chosen based on matching a range of Strouhal numbers typically seen in an engine due to oscillations caused by passing wakes. The blowing ratio was varied between M = 1, M = 2, and M = 3. These experiments were carried out at a density ratio of DR = 1.5 and mainstream turbulence levels of Tu ≈ 6%. The leading edge model was made of high conductivity epoxy in order to match the Biot number of an actual engine airfoil. Results of these tests showed that the film cooling performance with an oscillating stagnation line was degraded by as much as 25% compared to the performance of a steady flow with the stagnation line aligned with the row of holes at the leading edge.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Sign in / Sign up

Export Citation Format

Share Document