Biological Control Strategies

Author(s):  
Patricia J. Vittum

This chapter assesses biological control strategies that can reduce turfgrass insect pest populations. Biological control refers to the suppression of pest populations through the activity of living organisms or their by-products. Although a majority of this book is devoted to understanding turfgrass pests, most organisms associated with turfgrass are not pests but instead may be considered beneficial because they reduce thatch, help recycle soil nutrients, or are natural enemies of pest species. Pest outbreaks can sometimes be traced to the absence of natural control agents in the turf environment. Vertebrate and invertebrate predators, insect parasitoids, and microbial pathogens may act as natural enemies of turfgrass pests. Although the effect of one species of natural enemy may be minor, the combined effects of predators, parasitoids, and pathogens can cause considerable reductions in pest populations. Additional agents can be considered as biological controls. These include fungal endophytes (which confer host-plant resistance to some insects), botanicals (botanically derived insecticides), and synthetic compounds that mimic the activity of insect-produced compounds, such as growth hormones and pheromones.

Insects ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 439 ◽  
Author(s):  
Anamika Sharma ◽  
Ramandeep Kaur Sandhi ◽  
Gadi V. P. Reddy

Biological control agents and semiochemicals have become essential parts of the integrated pest management of insect pests over recent years, as the incorporation of semiochemicals with natural enemies and entomopathogenic microbials has gained significance. The potential of insect pheromones to attract natural enemies has mainly been established under laboratory conditions, while semiochemicals from plants have been used to attract and retain natural enemies in field conditions using strategies such as trap crops and the push–pull mechanism. The best-known semiochemicals are those used for parasitoids–insect pest–plant host systems. Semiochemicals can also aid in the successful dispersal of entomopathogenic microbials. The use of semiochemicals to disseminate microbial pathogens is still at the initial stage, especially for bacterial and viral entomopathogens. Future studies should focus on the integration of semiochemicals into management strategies for insects, for which several semiochemical compounds have already been studied. More effective formulations of microbial agents, such as granular formulations of entomopathogenic fungi (EPFs), along with bio-degradable trap materials, could improve this strategy. Furthermore, more studies to evaluate species-specific tactics may be needed, especially where more than one key pest is present.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pascal M. Ayelo ◽  
Christian W. W. Pirk ◽  
Abdullahi A. Yusuf ◽  
Anaïs Chailleux ◽  
Samira A. Mohamed ◽  
...  

Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Hosam M. K. H. El-Gepaly

AbstractSorghum panicles offer a very rich microenvironment for many insect pest species and their natural enemies. Thirty arthropod species belonging to 28 families, pertaining to 9 orders were obtained from sorghum panicles planted in Sohag Governorate, Egypt, during the 3 successive seasons of 2016–2018. Out of these species were 14 pests, 16 predators, and 3 parasitoids. Lepidopteran and hemipteran pests were the most dominant species-infested sorghum-panicles during the mature stages of the panicles. Three microlepidopteran pests, the noctuid, Eublemma (Autoba) gayneri (Roth.); the pyralid, Cryptoblabes gnidiella Millière, and the cosmopterigid, Pyroderces simplex Walsingham, were recorded as major pest species infesting sorghum panicles in Sohag Governorate. The dipteran parasitoid species, Nemorilla floralis (Fallen) (Tachinidae) emerged from the pupae of the E. gayneri and C. gnidiella, while the hymenopteran parasitoid, Brachymeria aegyptiaca (Chalcididae) was obtained from the pupae of all the studied microlepidopteran pests. Spiders, coccinellids, and Orius spp. were the dominant predators collected form panicles. Post-harvest, larvae, and pupae of lepidopteran pests, especially P. simplex recorded (147, 96, and 79 larvae) and (47, 30, and 73 pupae)/10 panicles in 2016, 2017, and 2018 seasons, respectively.


Author(s):  
Léna Durocher-Granger ◽  
Tibonge Mfune ◽  
Monde Musesha ◽  
Alyssa Lowry ◽  
Kathryn Reynolds ◽  
...  

AbstractInvasive alien species have environmental, economic and social impacts, disproportionally threatening livelihood and food security of smallholder farmers in low- and medium-income countries. Fall armyworm (FAW) (Spodoptera frugiperda), an invasive insect pest from the Americas, causes considerable losses on maize to smallholder farmers in Africa since 2016. The increased use of pesticides to control FAW in Africa raises concerns for health and environmental risks resulting in a growing interest in research on biological control options for smallholder farmers. In order to evaluate the occurrence of local natural enemies attacking FAW, we collected on a weekly basis FAW eggs and larvae during a maize crop cycle in the rainy season of 2018–2019 at four locations in the Lusaka and Central provinces in Zambia. A total of 4373 larvae and 162 egg masses were collected. For each location and date of collection, crop stage, the number of plants checked and amount of damage were recorded to analyse which factors best explain the occurrence of the natural enemy species on maize. Overall parasitism rates from local natural enemies at each location varied between 8.45% and 33.11%. We identified 12 different egg-larval, larval and larval-pupal parasitoid species. Location, maize growth stage, pest density and larval stage significantly affected parasitoid species occurrence. Our findings indicate that there is potential for increasing local populations of natural enemies of FAW through conservation biological control programmes and develop safe and practical control methods for smallholder farmers.


2018 ◽  
Vol 150 (2) ◽  
pp. 265-273
Author(s):  
J. van Zoeren ◽  
C. Guédot ◽  
S.A. Steffan

AbstractBiological control plays an important role in many integrated pest management programmes, but can be disrupted by other control strategies, including chemical and cultural controls. In commercial cranberry (Vaccinium macrocarpon Aiton; Ericaceae) production, a spring flood can replace an insecticide application, providing an opportunity to study the compatibility of the flood (a cultural control) with biological control. We suspect that chemical controls will tend to reduce the number of natural enemies, while the flood, through removal of detritus and detritivores, may cause generalist predators to prey-switch to consume proportionally more pest individuals. We measured the abundance of herbivores (Lepidoptera), detritivores, Arachnida, and parasitoids (Hymenoptera) every week for six weeks in Wisconsin (United States of America) cranberry beds following either an insecticide spray or a cultural control flood. We found that detritivore populations rapidly declined in both flood and spray treatments; conversely, carnivore populations (spiders and parasitoids) were more abundant in the flooded beds than in sprayed beds. Populations of key cranberry pests were similar between flooded and sprayed beds. Our results showed that early-season flooding preserved more natural enemies than an insecticide application. This increase in natural enemy abundance after the flood may allow for greater continuity in herbivore suppression, potentially providing a basis for long-term cranberry pest management.


Author(s):  
Xing-eng Wang

Abstract Drosophila suzukii (Matsumura) is native to East Asia but has widely established in the Americas and Europe, where it is a devastating pest of soft-skinned fruits. It has a wide host range and these non-crop habitats harbor the fly which then repeatedly reinvades crop fields. Biological control in non-crop habitats could be the cornerstone for sustainable management at the landscape level. Toward this goal, researchers have developed or investigated biological control tactics. We review over 100 studies, conducted in the Americas, Asia and Europe on natural enemies of D. suzukii. Two previous reviews provided an overview of potential natural enemies and detailed accounts on foreign explorations. Here, we provide an up-to-date list of known or evaluated parasitoids, predators and entomopathogens (pathogenic fungi, bacteria, nematodes, and viruses) and summarize research progress to date. We emphasize a systematic approach toward the development of biological control strategies that can stand alone or be combined with more conventional control tools. Finally, we propose a framework for the integrated use of biological control tools, from classical biological control with host-specific Asian parasitoids, to augmentative and conservation biological control with indigenous natural enemies, to the use of entomopathogens. This review provides a roadmap to foster the use of biological control tools in more sustainable D. suzukii control programs.


2018 ◽  
Vol 10 (7) ◽  
pp. 167 ◽  
Author(s):  
Angélica Massarolli ◽  
Ana Regina Lucena Hoffmann ◽  
Bruna Magda Favetti ◽  
Alessandra Regina Butnariu

Studies on natural enemies are important to find new species and to develop management strategies to preserve them to help control pests in biological control programs. For the state of Mato Grosso, Brazil, which comprises the Amazon, Cerrado, and Pantanal biomes, few studies have been conducted on the diversity of these parasitoids, possible endemic and/or new species, as well as their potential as natural enemies. Thus, the present study was aimed at describing the diversity of parasitoids of the families Ichneumonidae (Hymenoptera) and Tachinidae (Diptera) associated with pest lepidopterans in soybean crops. Weekly sampling of pest lepidopterans was carried out during four soybean seasons (2009/2010, 2010/2011, 2011/2012 and 2012/2013). Parasitoid larvae were observed in the main lepidopteran pest species of soybean during the four soybean seasons. Three genera of the Ichneumonidae family, belonging to the genera Microcharops Roman, Ophionellus Westwood, and Podogaster Brullé. Six genera of the Tachinidae family occur in the state of Mato Grosso in soybean fields. The following genera were recorded: Archytas spp. Jaennicke, Phorocera spp. Robineau-Desvoidy, Gymnocarcelia spp. Townsend, Lespesia spp. Robineau-Desvoidy, Eucelatoria spp. Townsend, Chetogena spp. Rondani. These parasitoids were found parasitizing caterpillars of the Noctuidae (Lepidoptera), in species that had not yet been reported as hosts for the Neotropical region. Further studies are needed on the beneficial entomofauna and their preservation in agricultural environments.


2014 ◽  
Vol 54 (3) ◽  
pp. 205-210 ◽  
Author(s):  
David William Hagstrum ◽  
Paul Whitney Flinn

Abstract Stored-product entomologists have a variety of new monitoring, decision-making, biological, chemical, and physical pest management tools available to them. Two types of stored-product insect populations are of interest: insects of immediate economic importance infesting commodities, and insects that live in food residues in equipment and facilities. The sampling and control methods change as grain and grain products move from field to consumer. There are also some changes in the major insect pest species to take into consideration. In this review, we list the primary insect pests at each point of the marketing system, and indicate which sampling methods and control strategies are most appropriate. Economic thresholds for insect infestation levels developed for raw commodity storage, processing plants, and retail business allow sampling-based pest management to be done before insect infestations cause economic injury. Taking enough samples to have a representative sample (20-30 samples) will generally provide enough information to classify a population as above or below an economic threshold.


2003 ◽  
Vol 93 (2) ◽  
pp. 137-144 ◽  
Author(s):  
H.F. Nahrung ◽  
G.R. Allen

AbstractChrysophtharta agricola (Chapuis) is a pest of commercial eucalypt plantations in Tasmania and Victoria. Vagility of pest populations may result in difficulty predicting temporal and spatial pest outbreaks, and influence genetic resistance to chemical control. Gene flow in this pest species was estimated to assess predicability of attack, the potential efficacy of natural enemies, and the likelihood of resistance build-up. Ten geographic populations of C. agricola (six from Tasmania, one from the Australian Capital Territory, one from New South Wales and two from Victoria) were examined for genetic variation and gene flow using cellulose acetate allozyme electrophoresis. Six enzyme systems (PGI, PGD, PGM, IDH, HEX and MPI) were consistently polymorphic and scorable and were used to quantify estimated gene flow between populations. FST values and analysis of molecular variance indicated that gene flow was restricted between populations. Chrysophtharta agricola exhibited high levels of heterozygosity, probably because of high allelic diversity, and because all loci examined were polymorphic. The southern-most population was the most genetically different to other Tasmanian populations, and may also have been the most recently colonized. Limited gene flow implies that outbreaks of C. agricola should be spatially predictable and populations susceptible to control by natural enemies. Our results also imply that genetic resistance to chemical control may occur under frequent application of insecticide. However, testing population movement between plantations and native forest also needs to be conducted to assess gene flow between forest types.


2020 ◽  
Vol 65 (1) ◽  
pp. 81-100 ◽  
Author(s):  
John F. Tooker ◽  
Matthew E. O'Neal ◽  
Cesar Rodriguez-Saona

Disturbances associated with agricultural intensification reduce our ability to achieve sustainable crop production. These disturbances stem from crop-management tactics and can leave crop fields more vulnerable to insect outbreaks, in part because natural-enemy communities often tend to be more susceptible to disturbance than herbivorous pests. Recent research has explored practices that conserve natural-enemy communities and reduce pest outbreaks, revealing that different components of agroecosystems can influence natural-enemy populations. In this review, we consider a range of disturbances that influence pest control provided by natural enemies and how conservation practices can mitigate or counteract disturbance. We use four case studies to illustrate how conservation and disturbance mitigation increase the potential for biological control and provide co-benefits for the broader agroecosystem. To facilitate the adoption of conservation practices that improve top-down control across significant areas of the landscape, these practices will need to provide multifunctional benefits, but should be implemented with natural enemies explicitly in mind.


Sign in / Sign up

Export Citation Format

Share Document