scholarly journals Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes

Author(s):  
Ji Min Choi ◽  
Sang Gyun Kim

It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Jacek Baj ◽  
Alicja Forma ◽  
Monika Sitarz ◽  
Piero Portincasa ◽  
Gabriella Garruti ◽  
...  

Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.


2017 ◽  
Vol 85 (5) ◽  
pp. AB303
Author(s):  
Tomomitsu Tahara ◽  
Sayumi Tahara ◽  
Tetsuya Tsukamoto ◽  
Noriyuki Horiguchi ◽  
Tomohiko Kawamura ◽  
...  

2020 ◽  
Author(s):  
Faisal Aziz ◽  
Mingxia Xin ◽  
Yunfeng Gao ◽  
Josh Monts ◽  
Kjersten Monson ◽  
...  

Abstract Background: Gastric cancer risk evolves over time due to environmental, dietary, and lifestyle changes including Helicobacter pylori (H. pylori) infection and consumption of hot peppers (i.e. capsaicin). H. pylori infection promotes gastric mucosal injury in the early phase of capsaicin exposure. In addition, capsaicin consumption is reported to suppress immune function and increase host susceptibility to microbial infection. This relationship suggests a need to investigate the mechanism of how both H. pylori infection and capsaicin contribute to gastric inflammation and lead to gastric cancer. No previous experimental animal models have been developed to study this dual association. Here we developed a series of mouse models that progress from chronic gastritis to gastric cancer. C57-Balb/c mice were infected with the H. pylori (SS1) strain and then fed capsaicin (0.05% or 0.2g/kg/day) or not. Consequently, we investigated the association between H. pylori infection and capsaicin consumption during the initiation of gastric inflammation and the later development of gastric cancer. Tumor size and phenotype were analyzed to determine the molecular mechanism driving the shift from gastritis to stomach cancer. Gastric carcinogenesis was also prevented in these models using the ornithine decarboxylase inhibitor DFMO (2-difluoromethylornithine). Results: This study provides evidence showing that a combination of H. pylori infection and capsaicin consumption leads to gastric carcinogenesis. The transition from chronic gastritis to gastric cancer is mediated through interleukin-6 (IL-6) stimulation with an incidence rate of 50%. However, this progression can be prevented by treating with anti-inflammatory agents. In particular, we used DFMO to prevent gastric tumorigenesis by reducing inflammation and promoting recovery of disease-free stasis. The anti-inflammatory role of DFMO highlights the injurious effect of inflammation in gastric cancer development and the need to reduce gastric inflammation for cancer prevention. Conclusions: Overall, these mouse models provide reliable systems for analyzing the molecular mechanisms and synergistic effects of H. pylori and capsaicin on human cancer etiology. Accordingly, preventive measures like reduced capsaicin consumption, H. pylori clearance, and DFMO treatment can lessen gastric cancer incidence. Lastly, anti-inflammatory agents like DFMO can play important roles in prevention of inflammation-associated gastric cancer.


2019 ◽  
Vol 12 ◽  
pp. 175628481989406 ◽  
Author(s):  
Christian Schulz ◽  
Kerstin Schütte ◽  
Julia Mayerle ◽  
Peter Malfertheiner

A link between chronic inflammation and carcinogenesis has been depicted in many organ systems. Helicobacter pylori is the most prevalent bacterial pathogen, induces chronic gastritis and is associated with more than 90% of cases of gastric cancer (GC). However, the introduction of nucleotide sequencing techniques and the development of biocomputional tools have surpassed traditional culturing techniques and opened a wide field for studying the mucosal and luminal composition of the bacterial gastric microbiota beyond H. pylori. In studies applying animal models, a potential role in gastric carcinogenesis for additional bacteria besides H. pylori has been demonstrated. At different steps of gastric carcinogenesis, changes in bacterial communities occur. Whether these microbial changes are a driver of malignant disease or a consequence of the histologic progression along the precancerous cascade, is not clear at present. It is hypothesized that atrophy, as a consequence of chronic gastric inflammation, alters the gastric niche for commensals that might further urge the development of H. pylori-induced GC. Here, we review the current state of knowledge on gastric bacteria other than H. pylori and on their synergism with H. pylori in gastric carcinogenesis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sergio Lario ◽  
María J. Ramírez-Lázaro ◽  
Aintzane González-Lahera ◽  
José L. Lavín ◽  
Maria Vila-Casadesús ◽  
...  

Abstract Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex and depends on complex interactions between host and environmental factors. The pathway towards gastric cancer is a sequence of events known as Correa’s model of gastric carcinogenesis, a stepwise inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric adenocarcinoma. This study examines gastric clinical specimens representing different steps of the Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that may have a role in Correa’s model of gastric carcinogenesis. We screened for differentially expressed genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed description of the experiments, methods and results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of the infection to more severe gastric diseases. Data is available via ArrayExpress.


2001 ◽  
Vol 69 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Michael A. Heneghan ◽  
Ciaran F. McCarthy ◽  
Daiva Janulaityte ◽  
Anthony P. Moran

ABSTRACT Lewis (Le) antigens have been implicated in the pathogenesis of atrophic gastritis and gastric cancer in the setting ofHelicobacter pylori infection, and H. pylori-induced anti-Le antibodies have been described that cross-react with the gastric mucosa of both mice and humans. The aim of this study was to examine the presence of anti-Le antibodies in patients with H. pylori infection and gastric cancer and to examine the relationships between anti-Le antibody production, bacterial Le expression, gastric histopathology, and host Le erythrocyte phenotype. Anti-Le antibody production and H. pylori Le expression were determined by enzyme-linked immunosorbent assay, erythrocyte Le phenotype was examined by agglutination assays, and histology was scored blindly. Significant levels of anti-Lex antibody (P < 0.0001, T = 76.4, DF = 5) and anti-Ley antibody (P < 0.0001, T = 73.05, DF = 5) were found in the sera of patients with gastric cancer and other H. pylori-associated pathology compared with H. pylori-negative controls. Following incubation of patient sera with synthetic Le glycoconjugates, anti-Lex and -Ley autoantibody binding was abolished. The degree of the anti-Lex and -Leyantibody response was unrelated to the host Le phenotype but was significantly associated with the bacterial expression of Lex (r = 0.863,r 2 = 0.745, P < 0.0001) and Ley (r = 0.796,r 2 = 0.634, P < 0.0001), respectively. Collectively, these data suggest that anti-Le antibodies are present in most patients with H. pyloriinfection, including those with gastric cancer, that variability exists in the strength of the anti-Le response, and that this response is independent of the host Le phenotype but related to the bacterial Le phenotype.


2012 ◽  
Vol 80 (11) ◽  
pp. 3795-3803 ◽  
Author(s):  
Kosuke Sakitani ◽  
Yoshihiro Hirata ◽  
Yoku Hayakawa ◽  
Takako Serizawa ◽  
Wachiko Nakata ◽  
...  

ABSTRACTHelicobacter pyloriinfection is associated with gastritis and gastric cancer. AnH. pylorivirulence factor, thecagpathogenicity island (PAI), is related to host cell cytokine induction and gastric inflammation. Since elucidation of the mechanisms of inflammation is important for therapy, the associations between cytokines and inflammatory diseases have been investigated vigorously. Levels of interleukin-32 (IL-32), a recently described inflammatory cytokine, are increased in various inflammatory diseases, such as rheumatoid arthritis and Crohn's disease, and in malignancies, including gastric cancer. In this report, we examined IL-32 expression in human gastric disease. We also investigated the function of IL-32 in activation of the inflammatory cytokines in gastritis. IL-32 expression paralleled human gastric tissue pathology, with low IL-32 expression inH. pylori-uninfected gastric mucosa and higher expression levels in gastritis and gastric cancer tissues.H. pyloriinfection increased IL-32 expression in human gastric epithelial cell lines.H. pylori-induced IL-32 expression was dependent on the bacterialcagPAI genes and on activation of nuclear factor κB (NF-κB). IL-32 expression induced byH. pyloriwas not detected in the supernatant of AGS cells but was found in the cytosol. Expression of theH. pylori-induced cytokines CXCL1, CXCL2, and IL-8 was decreased in IL-32-knockdown AGS cell lines compared to a control AGS cell line. We also found that NF-κB activation was decreased inH. pylori-infected IL-32-knockdown cells. These results suggest that IL-32 has important functions in the regulation of cytokine expression inH. pylori-infected gastric mucosa.


2018 ◽  
Vol 5 (8) ◽  
pp. 2794
Author(s):  
N. G. Javan ◽  
Wormi Sharon

Background: Infection with Helicobacter pylori (H. pylori) has been linked with chronic atrophic gastritis, an inflammatory precursor of gastric adenocarcinoma. There are data on the epidemiology, pathophysiology, and histology of this disease that show that Helicobacter pylori gastritis has an important role in gastric carcinogenesis. However, it has to be considered that only very few of those infected with Helicobacter pylori will develop gastric cancer. Hence, it will be a major target of future research to identify individuals who carry a greater risk for developing gastric cancer, and therefore may benefit from eradication of Helicobacter pylori in terms of gastric cancer prevention. Various studies revealed that approximately more than 50% of the world’s human population is infected by Helicobacter pylori. In underdeveloped countries, this association is shown to be much higher according to different studies.Methods: This study was conducted over a period of 36 months from 1st January 2014 till December 31st, 2016. All patients who underwent Gastrectomy during this period were taken. All specimens were investigated to see presence of helicobacter pylori by histological examination. A total of 50 Gastrectomy was performed by one surgical team over 36-month period.Results: Out of 50 patients, Helicobacter pylori positivity was seen in 33 (66%) cases by histopathological examination (HPE). Gastric cancer is more prevalent among males 31 (62%) as compared to 19 (38%) in females. It is more common among the older age group.Conclusions: Helicobacter pylori infection is higher in prevalence in cases of stomach cancer. Present study also showed that there is significant association of Helicobacter pylori infection with gastric carcinoma. Helicobacter pylori infection could be one of the etiological factors for gastric carcinoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mariagrazia Piscione ◽  
Mariangela Mazzone ◽  
Maria Carmela Di Marcantonio ◽  
Raffaella Muraro ◽  
Gabriella Mincione

Worldwide, gastric cancer (GC) represents the fifth cancer for incidence, and the third as cause of death in developed countries. Indeed, it resulted in more than 780,000 deaths in 2018. Helicobacter pylori appears to be responsible for the majority of these cancers. On the basis of recent studies, and either alone or combined with additional etiological factors, H. pylori is considered a “type I carcinogen.” Over recent decades, new insights have been obtained into the strategies that have been adopted by H. pylori to survive the acidic conditions of the gastric environment, and to result in persistent infection, and dysregulation of host functions. The multistep processes involved in the development of GC are initiated by transition of the mucosa into chronic non-atrophic gastritis, which is primarily triggered by infection with H. pylori. This gastritis then progresses into atrophic gastritis and intestinal metaplasia, and then to dysplasia, and following Correa’s cascade, to adenocarcinoma. The use of antibiotics for eradication of H. pylori can reduce the incidence of precancerous lesions only in the early stages of gastric carcinogenesis. Here, we first survey the etiology and risk factors of GC, and then we analyze the mechanisms underlying tumorigenesis induced by H. pylori, focusing attention on virulence factor CagA, inflammation, oxidative stress, and ErbB2 receptor tyrosine kinase. Moreover, we investigate the relationships between H. pylori eradication therapy and other diseases, considering not only cardia (upper stomach) cancers and Barrett’s esophagus, but also asthma and allergies, through discussion of the “hygiene hypothesis. ” This hypothesis suggests that improved hygiene and antibiotic use in early life reduces microbial exposure, such that the immune response does not become primed, and individuals are not protected against atopic disorders, asthma, and autoimmune diseases. Finally, we overview recent advances to uncover the complex interplay between H. pylori and the gut microbiota during gastric carcinogenesis, as characterized by reduced bacterial diversity and increased microbial dysbiosis. Indeed, it is of particular importance to identify the bacterial taxa of the stomach that might predict the outcome of gastric disease through the stages of Correa’s cascade, to improve prevention and therapy of gastric carcinoma.


Sign in / Sign up

Export Citation Format

Share Document