PARAMETRICAL DESIGN TRENDS FOR A HYPERBOLIC PARABOLOID SHAPED OVER A SQUARE PLAN: VERTICAL DISPLACEMENTS AND NATURAL PERIODS

Author(s):  
Gian Felice Giaccu ◽  
A. Viskovic
Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 70 ◽  
Author(s):  
Alberto Viskovic

Recent developments in the field of materials engineering have allowed for the use of natural materials for common structural elements, instead of traditional materials, such as steel or concrete. In this context, hemp is a very interesting material for structural building design. This paper proposes the use of hemp cables for roofs with hyperbolic paraboloid cable nets, which sees the use of a sustainable material for structure, thus having a very low environmental impact, in terms of structural thickness and amount of material. The paper discusses five different plan sizes and two different hyperbolic paraboloid surface radius of curvatures. The cable traction, which gives the cable net stiffness, was varied in order to give a parametric database of structural response. Three dimensional geometrically nonlinear analyses were carried out on different geometries (i.e., 10), cable net stiffnesses (i.e., 8), and materials (i.e., 2). Traditional harmonic steel and hemp cables are compared, in terms of vertical displacements and natural periods under dead and permanent loads.


2020 ◽  
Vol 7 (1) ◽  
pp. 226-246
Author(s):  
Fabio Rizzo ◽  
Cristoforo Demartino

AbstractThis paper presents a study on Singular Value Decomposition (SVD) of pressure coefficients hyperbolic parabolic roofs. The main goal of this study is to obtain pressure coefficient maps taking into account spatial non-uniform distribution and time-depending fluctuations of the pressure field. To this aim, pressure fields are described through pressure modes estimated by using the SVD technique. Wind tunnel experimental results on eight different geometries of buildings with hyperbolic paraboloid roofs are used to derive these pressure modes. The truncated SVD approach was applied to select a sufficient number of pressure modes necessary to reconstruct the measured signal given an acceptable difference. The truncated pressure modes are fitted through a polynomial surface to obtain a parametric form expressed as a function of the hyperbolic paraboloid roof geometry. The superpositions of pressure (envelopes) for all eight geometry were provided and used to modify mean pressure coefficients, to define design load combinations. Both symmetrical and asymmetrical pressure coefficient modes are used to estimate the wind action and to calculate the vertical displacements of a cable net by FEM analyses. Results clearly indicate that these load combinations allow for capturing large downward and upward displacements not properly predicted using mean experimental pressure coefficients.


PCI Journal ◽  
1958 ◽  
Vol 3 (1) ◽  
pp. 70-78
Author(s):  
T. Y. Lin ◽  
R. Itaya

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4842
Author(s):  
Waldemar Kamiński

Nowadays, hydrostatic levelling is a widely used method for the vertical displacements’ determinations of objects such as bridges, viaducts, wharfs, tunnels, high buildings, historical buildings, special engineering objects (e.g., synchrotron), sports and entertainment halls. The measurements’ sensors implemented in the hydrostatic levelling systems (HLSs) consist of the reference sensor (RS) and sensors located on the controlled points (CPs). The reference sensor is the one that is placed at the point that (in theoretical assumptions) is not a subject to vertical displacements and the displacements of controlled points are determined according to its height. The hydrostatic levelling rule comes from the Bernoulli’s law. While using the Bernoulli’s principle in hydrostatic levelling, the following components have to be taken into account: atmospheric pressure, force of gravity, density of liquid used in sensors places at CPs. The parameters mentioned above are determined with some mean errors that influence on the accuracy assessment of vertical displacements. In the subject’s literature, there are some works describing the individual accuracy analyses of the components mentioned above. In this paper, the author proposes the concept of comprehensive determination of mean error of vertical displacement (of each CPs), calculated from the mean errors’ values of components dedicated for specific HLS. The formulas of covariances’ matrix were derived and they enable to make the accuracy assessment of the calculations’ results. The author also presented the subject of modelling of vertical displacements’ gained values. The dependences, enabling to conduct the statistic tests of received model’s parameters, were implemented. The conducted tests make it possible to verify the correctness of used theoretical models of the examined object treated as the rigid body. The practical analyses were conducted for two simulated variants of sensors’ connections in HLS. Variant no. I is the sensors’ serial connection. Variant no. II relies on the connection of each CPs with the reference sensor. The calculations’ results show that more detailed value estimations of the vertical displacements can be obtained using variant no. II.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 183
Author(s):  
Michael Olbrich ◽  
Arwed Schütz ◽  
Tamara Bechtold ◽  
Christoph Ament

In order to satisfy the demand for the high functionality of future microdevices, research on new concepts for multistable microactuators with enlarged working ranges becomes increasingly important. A challenge for the design of such actuators lies in overcoming the mechanical connections of the moved object, which limit its deflection angle or traveling distance. Although numerous approaches have already been proposed to solve this issue, only a few have considered multiple asymptotically stable resting positions. In order to fill this gap, we present a microactuator that allows large vertical displacements of a freely moving permanent magnet on a millimeter-scale. Multiple stable equilibria are generated at predefined positions by superimposing permanent magnetic fields, thus removing the need for constant energy input. In order to achieve fast object movements with low solenoid currents, we apply a combination of piezoelectric and electromagnetic actuation, which work as cooperative manipulators. Optimal trajectory planning and flatness-based control ensure time- and energy-efficient motion while being able to compensate for disturbances. We demonstrate the advantage of the proposed actuator in terms of its expandability and show the effectiveness of the controller with regard to the initial state uncertainty.


Author(s):  
Sarmila Sahoo

The present study investigates buckling characteristics of cut-out borne stiffened hyperbolic paraboloid shell panel made of laminated composites using finite element analysis to evaluate the governing differential equations of global buckling of the structure. The finite element code is validated by solving benchmark problems from literature. Different parametric variations are studied to find the optimum panel buckling load. Laminations, boundary conditions, depth of stiffener and arrangement of stiffeners are found to influence the panel buckling load. Effect of different parameters like cut-out size, shell width to thickness ratio, degree of orthotropy and fiber orientation angle of the composite layers on buckling load are also studied. Parametric and comparative studies are conducted to analyze the buckling strength of composite hyperbolic paraboloid shell panel with cut-out.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Richard L. Ybañez ◽  
Audrei Anne B. Ybañez ◽  
Alfredo Mahar Francisco A. Lagmay ◽  
Mario A. Aurelio

AbstractSmall unmanned aerial vehicles have been seeing increased deployment in field surveys in recent years. Their portability, maneuverability, and high-resolution imaging are useful in mapping surface features that satellite- and plane-mounted imaging systems could not access. In this study, we develop and apply a workplan for implementing UAV surveys in post-disaster settings to optimize the flights for the needs of the scientific team and first responders. Three disasters caused by geophysical hazards and their associated surface deformation impacts were studied implementing this workplan and was optimized based on the target features and environmental conditions. An earthquake that caused lateral spreading and damaged houses and roads near riverine areas were observed in drone images to have lengths of up to 40 m and vertical displacements of 60 cm. Drone surveys captured 2D aerial raster images and 3D point clouds leading to the preservation of these features in soft-sedimentary ground which were found to be tilled over after only 3 months. The point cloud provided a stored 3D environment where further analysis of the mechanisms leading to these fissures is possible. In another earthquake-devastated locale, areas hypothesized to contain the suspected source fault zone necessitated low-altitude UAV imaging below the treeline capturing Riedel shears with centimetric accuracy that supported the existence of extensional surface deformation due to fault movement. In the aftermath of a phreatomagmatic eruption and the formation of sub-metric fissures in nearby towns, high-altitude flights allowed for the identification of the location and dominant NE–SW trend of these fissures suggesting horst-and-graben structures. The workplan implemented and refined during these deployments will prove useful in surveying other post-disaster settings around the world, optimizing data collection while minimizing risk to the drone and the drone operators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. Yadidya ◽  
A. D. Rao ◽  
Sachiko Mohanty

AbstractThe changes in the physical properties of the ocean on a diurnal scale primarily occur in the surface mixed layer and the pycnocline. Price–Weller–Pinkel model, which modifies the surface mixed layer, and the internal wave model based on Garrett–Munk spectra that calculates the vertical displacements due to internal waves are coupled to simulate the diurnal variability in temperature and salinity, and thereby density profiles. The coupled model is used to simulate the hourly variations in density at RAMA buoy (15° N, 90° E), in the central Bay of Bengal, and at BD12 (10.5° N, 94° E), in the Andaman Sea. The simulations are validated with the in-situ observations from December 2013 to November 2014. The primary advantage of this model is that it could simulate spatial variability as well. An integrated model is also tested and validated by using the output of the 3D model to initialize the coupled model during January, April, July, and October. The 3D model can be used to initialize the coupled model at any given location within the model domain to simulate the diurnal variability of density. The simulations showed promising results which could be further used in simulating the acoustic fields and propagation losses which are crucial for Navy operations.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Sign in / Sign up

Export Citation Format

Share Document