scholarly journals Strength Analysis of Alternative Airframe Layouts of Regional Aircraft on the Basis of Automated Parametrical Models

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.

2010 ◽  
Vol 2010 (1) ◽  
pp. 000176-000179
Author(s):  
Mark Willey ◽  
Damo Srinivas ◽  
Sesha Varadarajan ◽  
David Porter ◽  
Easwar Srinivasan ◽  
...  

Today's Through Silicon Via (TSV) processes are limited to aspect ratios of 10:1. High performance logic devices drive the need for aspect ratios approaching 20:1 in order to achieve the desired performance while simultaneously reducing costs. The reduced via area required on the wafer enables the designer to utilize less real estate on the die to reduce cost or to potentially add redundant vias to improve yield. However, current conventional processes and techniques are not capable of achieving robust fill on aspect ratios greater than 12:1. This presentation will highlight the technical challenges in achieving robust copper fill on super high aspect ratio TSV structures. Additionally, a compelling, economic solution pathway will be presented that integrates a low temperature conformal high quality dielectric isolation layer, a high step coverage Cu barrier / seed technology and a void free high speed electroplating process with a wide process window that could accelerate the adoption of the high aspect ratio TSV design schemes.


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Cruz ◽  
Klas Hjort

AbstractThe ability to focus, separate and concentrate specific targets in a fluid is essential for the analysis of complex samples such as biological fluids, where a myriad of different particles may be present. Inertial focusing is a very promising technology for such tasks, and specially a recently presented variant, inertial focusing in High Aspect Ratio Curved systems (HARC systems), where the systems are easily engineered and focus the targets together in a stable position over a wide range of particle sizes and flow rates. However, although convenient for laser interrogation and concentration, by focusing all particles together, HARC systems lose an essential feature of inertial focusing: the possibility of particle separation by size. Within this work, we report that HARC systems not only do have the capacity to separate particles but can do so with extremely high resolution, which we demonstrate for particles with a size difference down to 80 nm. In addition to the concept for particle separation, a model considering the main flow, the secondary flow and a simplified expression for the lift force in HARC microchannels was developed and proven accurate for the prediction of the performance of the systems. The concept was also demonstrated experimentally with three different sub-micron particles (0.79, 0.92 and 1.0 µm in diameter) in silicon-glass microchannels, where the resolution in the separation could be modulated by the radius of the channel. With the capacity to focus sub-micron particles and to separate them with high resolution, we believe that inertial focusing in HARC systems is a technology with the potential to facilitate the analysis of complex fluid samples containing bioparticles like bacteria, viruses or eukaryotic organelles.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18311-18317 ◽  
Author(s):  
Yuan Gao ◽  
Yuanjing Lin ◽  
Zehua Peng ◽  
Qingfeng Zhou ◽  
Zhiyong Fan

Three-dimensional interconnected nanoporous structure (3-D INPOS) possesses high aspect ratio, large surface area, as well as good structural stability. Profiting from its unique interconnected architecture, the 3-D INPOS pseudocapacitor achieves a largely enhanced capacitance and rate capability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mana Iwai ◽  
Tatsuya Kikuchi ◽  
Ryosuke O. Suzuki

AbstractHigh-aspect ratio ordered nanomaterial arrays exhibit several unique physicochemical and optical properties. Porous anodic aluminum oxide (AAO) is one of the most typical ordered porous structures and can be easily fabricated by applying an electrochemical anodizing process to Al. However, the dimensional and structural controllability of conventional porous AAOs is limited to a narrow range because there are only a few electrolytes that work in this process. Here, we provide a novel anodizing method using an alkaline electrolyte, sodium tetraborate (Na2B4O7), for the fabrication of a high-aspect ratio, self-ordered nanospike porous AAO structure. This self-ordered porous AAO structure possesses a wide range of the interpore distance under a new anodizing regime, and highly ordered porous AAO structures can be fabricated using pre-nanotexturing of Al. The vertical pore walls of porous AAOs have unique nanospikes measuring several tens of nanometers in periodicity, and we demonstrate that AAO can be used as a template for the fabrication of nanomaterials with a large surface area. We also reveal that stable anodizing without the occurrence of oxide burning and the subsequent formation of uniform self-ordered AAO structures can be achieved on complicated three-dimensional substrates.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 45037-45041
Author(s):  
Tianli Duan ◽  
Chenjie Gu ◽  
Diing Shenp Ang ◽  
Kang Xu ◽  
Zhihong Liu

A novel technique is demonstrated for the fabrication of silicon nanopillar arrays with high aspect ratios.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


Sign in / Sign up

Export Citation Format

Share Document