scholarly journals Control and benchmarking of a 7-DOF robotic arm using Gazebo and ROS

2021 ◽  
Vol 7 ◽  
pp. e383
Author(s):  
Bowei Zhang ◽  
Pengcheng Liu

The robot controller plays an important role in controlling the robot. The controller mainly aims to eliminate or suppress the influence of uncertain factors on the control robot. Furthermore, there are many types of controllers, and different types of controllers have different features. To explore the differences between controllers of the same category, this article studies some controllers from basic controllers and advanced controllers. This article conducts the benchmarking of the selected controller through pre-set tests. The test task is the most commonly used pick and place. Furthermore, to complete the robustness test, a task of external force interference is also set to observe whether the controller can control the robot arm to return to a normal state. Subsequently, the accuracy, control efficiency, jitter and robustness of the robot arm controlled by the controller are analyzed by comparing the Position and Effort data. Finally, some future works of the benchmarking and reasonable improvement methods are discussed.

Author(s):  
Upendra K. Parghi ◽  
H. K. Raval

Robotics is a technology that is utilized tremendously in Industrial and Commercial Applications. Different types of robotic arms are used to fulfill the industrial needs. The aim of the work presented in this paper is to give a visual simulation of the robotic arm (Aristo Robot – 6 DOF) which can be used with offline robotic programming thereby introducing the language to the user and creating a training package for the user. This software also reduces the time as programming can be done offline. The pick and place robotic arm comprises of 6 links, which each of them has one degree of freedom (DOF) with a payload capacity of 3 kg is used for visual simulation. The main objective is to design a three dimensional graphic of a robotic arm and its movement animation that imitates the movement of actual robotic arm. The graphic design is then used as a foundation to find its limits of reach in the surrounding. Also the analysis of workspace is done to understand its workspace volume properly.


Author(s):  
Anwer Sabah Ahmed ◽  
Heyam A. Marzog ◽  
Laith Ali Abdul-Rahaim

Every day, the technologies are expanding and developed with extra things to them. A cloud computing (CC) and Internet of things (IoT) became deeply associated with technologies of the internet of future with one supply the other a way helping it for the successful. Arduino microcontroller is used to design robotic arm to pick and place the objects by the web page commands that can be used in many industrials. It can pick and place an object from source to destination and drive the screws in into its position safely. The robot arm is controlled using web page designed by (html) language which contain the dashboard that give the commands to move the servos in the desired angle to get the aimed direction accordingly. At the receiver end there are four servo motors which are made to be interfaced with the micro controller (Arduino) which is connected to the wireless network router. One of these is for the arm horizontally movement and two for arm knee, while the fourth is for catch tings or tight movement. Two ultra-sonic sensors are used for limiting the operation area of the robotic arm. Finally, Proteus program is used for the simulation the controlling of robot before the hardware installation


2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


Author(s):  
Zhaohui Zheng ◽  
Yong Ma ◽  
Hong Zheng ◽  
Yu Gu ◽  
Mingyu Lin

Purpose The welding areas of the workpiece must be consistent with high precision to ensure the welding success during the welding of automobile parts. The purpose of this paper is to design an automatic high-precision locating and grasping system for robotic arm guided by 2D monocular vision to meet the requirements of automatic operation and high-precision welding. Design/methodology/approach A nonlinear multi-parallel surface calibration method based on adaptive k-segment master curve algorithm is proposed, which improves the efficiency of the traditional single camera calibration algorithm and accuracy of calibration. At the same time, the multi-dimension feature of target based on k-mean clustering constraint is proposed to improve the robustness and precision of registration. Findings A method of automatic locating and grasping based on 2D monocular vision is provided for robot arm, which includes camera calibration method and target locating method. Practical implications The system has been integrated into the welding robot of an automobile company in China. Originality/value A method of automatic locating and grasping based on 2D monocular vision is proposed, which makes the robot arm have automatic grasping function, and improves the efficiency and precision of automatic grasp of robot arm.


2016 ◽  
Vol 5 (3) ◽  
pp. 73 ◽  
Author(s):  
Haidar F. AL-Qrimli ◽  
Karam S. Khalid ◽  
Ahmed M. Abdelrhman ◽  
Roaad K. Mohammed A ◽  
Husam M. Hadi

The purpose of this work is to present a clear fundamental thought for designing and investigating straight bevel gear made of composite material. Composite materials have the advantage of being light, producing low noises, and extra loading capacities. Due to these properties, it is highly preferable over conventional materials. A comparison between different types of material used in a gear structure will be shown. The outcome shows that a new form of cheap material may be useful for designing a new type of lighter and stiffer gear, designed for robotic arm applications or any power transmission application.


2013 ◽  
Vol 273 ◽  
pp. 119-123
Author(s):  
Ding Jin Huang ◽  
Teng Liu

The use of traditional analytical method for manipulator inverse kinematics is able to get a display solution with the limitations of the application, only when the robotic arm has a specific structure. In view of the insufficient, this paper presents an improved artificial potential field method to solve the inverse kinematics problem of the manipulator which does not have a special structure. Firstly, establish the standard DH model for the robot arm. Then the strategy that improves search space of artificial potential field method and motion control standard is presented by combining artificial potential field method with the manipulator. Finally, the simulation results show that the proposed method is effective.


2022 ◽  
Author(s):  
Madhav Rao

This study examines the system integration of a game engine with robotics middleware to drive an 8 degree offreedom (DoF) robotic upper limb to generate human-like motion for telerobotic applications. The developed architectureencompasses a pipeline execution design using Blender Game Engine (BGE) including the acquisition of real humanmovements via the Microsoft Kinect V2, interfaced with a modeled virtual arm, and replication of similar arm movements on the physical robotic arm. In particular, this study emphasizes the integration of a human “pilot” with ways to drive such a robotic arm through simulation and later, into a finished system. Additionally, using motion capture technology, a human upper limb action was recorded and applied onto the robot arm using the proposed architecture flow. Also, we showcase the robotic arm’s actions which include reaching, picking, holding, and dropping an object. This paper presentsa simple and intuitive kinematic modeling and 3D simulation process, which is validated using 8-DoF articulated robot to demonstrate methods for animation, and simulation using the designed interface.


Author(s):  
Shriya A. Hande ◽  
Nitin R. Chopde

<p>In today’s world, in almost all sectors, most of the work is done by robots or robotic arm having different number of degree of freedoms (DOF’s) as per the requirement. This project deals with the Design and Implementation of a “Wireless Gesture Controlled Robotic Arm with Vision”. The system design is divided into 3 parts namely: Accelerometer Part, Robotic Arm and Platform. It is fundamentally an Accelerometer based framework which controls a Robotic Arm remotely utilizing a, little and minimal effort, 3-pivot (DOF's) accelerometer by means of RF signals. The Robotic Arm is mounted over a versatile stage which is likewise controlled remotely by another accelerometer. One accelerometer is mounted/joined on the human hand, catching its conduct (motions and stances) and hence the mechanical arm moves in like manner and the other accelerometer is mounted on any of the leg of the client/administrator, catching its motions and stances and in this way the stage moves as needs be. In a nutshell, the robotic arm and platform is synchronised with the gestures and postures of the hand and leg of the user / operator, respectively. The different motions performed by robotic arm are: PICK and PLACE / DROP, RAISING and LOWERING the objects. Also, the motions performed by the platform are: FORWARD, BACKWARD, RIGHT and LEFT.</p>


2020 ◽  
Vol 2 (1) ◽  
pp. 12-20
Author(s):  
Edward Laman ◽  
Mohd Nazmin Maslan ◽  
Mahasan Mat Ali ◽  
Lokman Abdullah ◽  
Ruzaidi Zamri ◽  
...  

Robotica ◽  
1996 ◽  
Vol 14 (1) ◽  
pp. 103-109 ◽  
Author(s):  
B. Eldridge ◽  
K. Gruben ◽  
D. LaRose ◽  
J. Funda ◽  
S. Gomory ◽  
...  

SummaryWe have designed a robotic arm based on a double parallel four bar linkage to act as an assistant in minimally invasive surgical procedures. The remote center of motion (RCM) geometry of the robot arm kinematically constraints the robot motion such that minimal translation of an instrument held by the robot takes place at the entry portal into the patientApos;s body. In addition to the two rotational degrees of freedom comprising the RCM arm, distal translation and rotation are provided to manoeuver the instrument within the patient's body about an axis coincident with the RCM. An XYZ translation stage located proximal to the RCM arm provides positioning capability to establish the RCM location relative to the patients anatomy. An electronics set capable of controlling the system, as well as performing a series of safety checks to verify correct system operation, has also been designed and constructed. The robot is capable of precise positional motion. Repeatability in the ±10 micron range is demonstrated. The complete robotic system consists of the robot hardware and an IBM PC-AT based servo controller connected via a custom shared memory link to a host IBM PS/2. For laparoscopic applications, the PS/2 includes an image capture board to capture and process video camera images. A camera rotation stage has also been designed for this application. We have successfully demonstrated this system as an assistant in a laparoscopic cholecystectomy. Further applications for this system involving active tissue manipulation are under development.


Sign in / Sign up

Export Citation Format

Share Document