scholarly journals Validity of the Polar Vantage M watch when measuring heart rate at different exercise intensities

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10893
Author(s):  
Tricia Shumate ◽  
Magdalen Link ◽  
James Furness ◽  
Kevin Kemp-Smith ◽  
Vini Simas ◽  
...  

Background The use of wrist worn wearable fitness trackers has been growing rapidly over the last decade. The growing popularity can be partly attributed to the improvements in technology, making activity trackers more affordable, comfortable and convenient for use in different fitness and environmental applications. Fitness trackers typically monitor activity level, track steps, distance, heart rate (HR), sleep, peripheral capillary oxygen saturation and more, as the technology continuously is advancing. In terms of measuring HR, photoplethysmography (PPG) is a relatively new technology utilised in wearables. PPG estimates HR through an optical technique that monitors changes in blood volume beneath the skin. With these new products becoming available it is important that the validity of these devices be evaluated. Therefore, the aim of this study was to assess the validity of the Polar Vantage M (PVM) watch to measure HR compared to medical grade ECG on a healthy population during a range of treadmill exercise intensities. Methods A total of 30 healthy participants (n = 17 males, n = 13 females) were recruited for this study. The validity of the PVM watch to measure HR was compared against the gold standard 5-lead ECG. The study was conducted on 2 separate testing days with 24–48 h between sessions. Participants completed the Bruce Treadmill Protocol, and HR was measured every 30 s. Validation of the PVM watch in comparison to the ECG was measured with an Intraclass Correlation Coefficient (ICC) and associated 95% confidence intervals (CI) and levels of agreement were identified with Bland–Altman plots with 90% limits of agreement. Linear regression analysis was performed to calculate the value of r2 computing the variation of HR obtained by the PVM watch and ECG. Results In total, 30 participants completed the protocol, with data from 28 participants utilised for statistical analysis (16 males, 14 females, 26.10 ± 3.39 years, height 52.36 m ± 7.40 cm, mass 73.59 ± 11.90 kg). A strong and significant correlation was found between the PVM watch and ECG, demonstrating good criterion validity (p < 0.05, r2 = 0.87). Good validity was seen for day 1 and day 2 for stage 0 (ICC = 0.83; 95% CI [0.63–0.92], ICC = 0.74; 95% CI [0.37–0.88]), stage 1 (ICC = 0.78; 95% CI [0.52–0.90], ICC = 0.88; 95% CI [0.74–0.95]), and stage 2 (ICC = 0.88; 95% CI [0.73–0.94], ICC = 0.80; 95% CI [0.40–0.92]). Poor validity was demonstrated on day 1 and day 2 for stages 3–5 (ICC < 0.50). Conclusion This study revealed that the PVM watch had a strong correlation with the ECG throughout the entire Bruce Protocol, however the level of agreement (LoA) becomes widely dispersed as exercise intensities increased. Due to the large LoA between the ECG and PVM watch, it is not advisable to use this device in clinical populations in which accurate HR measures are essential for patient safety; however, the watch maybe used in settings where less accurate HR is not critical to an individual’s safety while exercising.

10.2196/14707 ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e14707 ◽  
Author(s):  
Hsueh-Wen Chow ◽  
Chao-Ching Yang

Background Wearable fitness trackers are devices that can record and enhance physical activity among users. Recently, photoplethysmography (PPG) devices that use optical heart rate sensors to detect heart rate in real time have become popular and help in monitoring and controlling exercise intensity. Although the benefits of using optical heart rate monitors have been highlighted through studies, the accuracy of the readouts these commercial devices generate has not been widely assessed for different age groups, especially for the East Asian population with Fitzpatrick skin type III or IV. Objective This study aimed to examine the accuracy of 2 wearable fitness trackers with PPG to monitor heart rate in real time during moderate exercise in young and older adults. Methods A total of 20 young adults and 20 older adults were recruited for this study. All participants were asked to undergo a series of sedentary and moderate physical activities using indoor aerobic exercise equipment. In this study, the Polar H7 chest-strapped heart rate monitor was used as the criterion measure in 2 fitness trackers, namely Xiaomi Mi Band 2 and Garmin Vivosmart HR+. The real-time, second-by-second heart rate data obtained from both devices were recorded using the broadcast heart rate mode. To critically analyze the results, multiple statistical parameters including the mean absolute percentage error (MAPE), Lin concordance correlation coefficient (CCC), intraclass correlation coefficient, the Pearson product moment correlation coefficient, and the Bland-Altman coefficient were determined to examine the performances of the devices. Results Both test devices exhibited acceptable overall accuracy as heart rate sensors based on several statistical tests. Notably, the MAPE values were below 10% (the designated threshold) in both devices (GarminYoung=3.77%; GarminSenior=4.73%; XiaomiYoung=7.69%; and XiaomiSenior=6.04%). The scores for reliability test of CCC for Garmin were 0.92 (Young) and 0.80 (Senior), whereas those for Xiaomi were 0.76 (Young) and 0.73 (Senior). However, the results obtained using the Bland-Altman analysis indicated that both test optical devices underestimated the average heart rate. More importantly, the study documented some unexpected outlier readings reported by these devices when used on certain participants. Conclusions The study reveals that commonly used optical heart rate sensors, such as the ones used herein, generally produce accurate heart rate readings irrespective of the age of the user. However, users should avoid relying entirely on these readings to indicate exercise intensities, as these devices have a tendency to produce erroneous, extreme readings, which might misinterpret the real-time exercise intensity. Future studies should therefore emphasize the occurrence rate of such errors, as this will likely benefit the development of improved models of heart rate sensors.


2019 ◽  
Author(s):  
Hsueh-Wen Chow ◽  
Chao-Ching Yang

BACKGROUND Wearable fitness trackers are devices that can record and enhance physical activity among users. Recently, photoplethysmography (PPG) devices that use optical heart rate sensors to detect heart rate in real time have become popular and help in monitoring and controlling exercise intensity. Although the benefits of using optical heart rate monitors have been highlighted through studies, the accuracy of the readouts these commercial devices generate has not been widely assessed for different age groups, especially for the East Asian population with Fitzpatrick skin type III or IV. OBJECTIVE This study aimed to examine the accuracy of 2 wearable fitness trackers with PPG to monitor heart rate in real time during moderate exercise in young and older adults. METHODS A total of 20 young adults and 20 older adults were recruited for this study. All participants were asked to undergo a series of sedentary and moderate physical activities using indoor aerobic exercise equipment. In this study, the Polar H7 chest-strapped heart rate monitor was used as the criterion measure in 2 fitness trackers, namely Xiaomi Mi Band 2 and Garmin Vivosmart HR+. The real-time, second-by-second heart rate data obtained from both devices were recorded using the broadcast heart rate mode. To critically analyze the results, multiple statistical parameters including the mean absolute percentage error (MAPE), Lin concordance correlation coefficient (CCC), intraclass correlation coefficient, the Pearson product moment correlation coefficient, and the Bland-Altman coefficient were determined to examine the performances of the devices. RESULTS Both test devices exhibited acceptable overall accuracy as heart rate sensors based on several statistical tests. Notably, the MAPE values were below 10% (the designated threshold) in both devices (Garmin<sub>Young</sub>=3.77%; Garmin<sub>Senior</sub>=4.73%; Xiaomi<sub>Young</sub>=7.69%; and Xiaomi<sub>Senior</sub>=6.04%). The scores for reliability test of CCC for Garmin were 0.92 (Young) and 0.80 (Senior), whereas those for Xiaomi were 0.76 (Young) and 0.73 (Senior). However, the results obtained using the Bland-Altman analysis indicated that both test optical devices underestimated the average heart rate. More importantly, the study documented some unexpected outlier readings reported by these devices when used on certain participants. CONCLUSIONS The study reveals that commonly used optical heart rate sensors, such as the ones used herein, generally produce accurate heart rate readings irrespective of the age of the user. However, users should avoid relying entirely on these readings to indicate exercise intensities, as these devices have a tendency to produce erroneous, extreme readings, which might misinterpret the real-time exercise intensity. Future studies should therefore emphasize the occurrence rate of such errors, as this will likely benefit the development of improved models of heart rate sensors.


2010 ◽  
Vol 298 (1) ◽  
pp. R34-R42 ◽  
Author(s):  
Takafumi Kato ◽  
Yuji Masuda ◽  
Hayato Kanayama ◽  
Norimasa Nakamura ◽  
Atsushi Yoshida ◽  
...  

Exaggerated jaw motor activities during sleep are associated with muscle symptoms in the jaw-closing rather than the jaw-opening muscles. The intrinsic activity of antagonistic jaw muscles during sleep remains unknown. This study aims to assess the balance of muscle activity between masseter (MA) and digastric (DG) muscles during sleep in guinea pigs. Electroencephalogram (EEG), electroocculogram, and electromyograms (EMGs) of dorsal neck, MA, and DG muscles were recorded with video during sleep-wake cycles. These variables were quantified for each 10-s epoch. The magnitude of muscle activity during sleep in relation to mean EMG activity of total wakefulness was up to three times higher for MA muscle than for DG muscle for nonrapid eye movement (NREM) and rapid-eye-movement (REM) sleep. Although the activity level of the two jaw muscles fluctuated during sleep, the ratio of activity level for each epoch was not proportional. Epochs with a high activity level for each muscle were associated with a decrease in δEEG power and/or an increase in heart rate in NREM sleep. However, this association with heart rate and activity levels was not observed in REM sleep. These results suggest that in guinea pigs, the magnitude of muscle activity for antagonistic jaw muscles is heterogeneously modulated during sleep, characterized by a high activity level in the jaw-closing muscle. Fluctuations in the activity are influenced by transient arousal levels in NREM sleep but, in REM sleep, the distinct controls may contribute to the fluctuation. The above intrinsic characteristics could underlie the exaggeration of jaw motor activities during sleep (e.g., sleep bruxism).


2011 ◽  
Vol 8 (8) ◽  
pp. 1117-1123 ◽  
Author(s):  
Deborah A. Cohen ◽  
Claude Setodji ◽  
Kelly R. Evenson ◽  
Phillip Ward ◽  
Sandra Lapham ◽  
...  

Background:The Systematic Observation of Play and Recreation in Communities (SOPARC) was designed to estimate the number and characteristics of people using neighborhood parks by assessing them 4 times/day, 7 days/week. We tested whether this schedule was adequate and determined the minimum number of observations necessary to provide a robust estimate of park user characteristics and their physical activity levels.Methods:We conducted observations every hour for 14 hours per day during 1 summer and 1 autumn week in 10 urban neighborhood parks: 2 each in Los Angeles, CA; Albuquerque, NM; Columbus, OH; Durham, NC; and Philadelphia, PA. We counted park users by gender, age group, apparent race/ethnicity, and activity level. We used a standardized Cronbach’s alpha and intraclass correlation coefficients to test the reliability of using fewer observations.Results:We observed 76,632 individuals, an average of 547/park/day (range 155−786). Interobserver reliability ranged from 0.80 to 0.99. Obtaining a robust estimate of park user characteristics and their physical activity required a schedule of 4 days/week, 4 times/day.Conclusion:An abbreviated schedule of SOPARC was sufficient for estimating park use, park user characteristics, and physical activity. Applying these observation methods can augment physical activity surveillance.


2017 ◽  
Vol 95 (4) ◽  
pp. 349-355 ◽  
Author(s):  
Luke Anthony Rannelli ◽  
Jennifer M. MacRae ◽  
Michelle C. Mann ◽  
Sharanya Ramesh ◽  
Brenda R. Hemmelgarn ◽  
...  

Diabetes confers greater cardiovascular risk to women than to men. Whether insulin-resistance-mediated risk extends to the healthy population is unknown. Measures of insulin resistance (fasting insulin, homeostatic model assessment, hemoglobin A1c, quantitative insulin sensitivity check index, glucose) were determined in 48 (56% female) healthy subjects. Heart rate variability (HRV) was calculated by spectral power analysis and arterial stiffness was determined using noninvasive applanation tonometry. Both were measured at baseline and in response to angiotensin II infusion. In women, there was a non-statistically significant trend towards increasing insulin resistance being associated with an overall unfavourable HRV response and increased arterial stiffness to the stressor, while men demonstrated the opposite response. Significant differences in the associations between insulin resistance and cardiovascular physiological profile exist between healthy women and men. Further studies investigating the sex differences in the pathophysiology of insulin resistance in cardiovascular disease are warranted.


1993 ◽  
Vol 5 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Hazzaa M. Al-Hazzaa ◽  
Mohammed A. Sulaiman

The present study examined the relationship between maximal oxygen uptake (V̇O2max) and daily physical activity in a group of 7- to 12-year-old boys. V̇O2max was assessed through the incremental treadmill test using an open circuit system. Physical activity level was obtained from heart rate telemetry outside of school time for 8 hrs during weekdays and during 40 min of physical education classes. The findings indicated that the absolute value of V̇O2max increased with age, while relative to body weight it remained almost the same across age, with a mean of 48.4 ml · kg−1 · min−1. Moreover, heart rate telemetry showed that the boys spent a limited amount of time on activities that raise the heart rate to a level above 160 bpm (an average of 1.9%). In addition, V̇O2max was found to be significantly related to the percentage of time spent at activity levels at or above a heart rate of 140 bpm, but not with activity levels at or above a heart rate of 160 bpm.


2015 ◽  
Vol 105 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Lourdes Gutiérrez-Vilahú ◽  
Núria Massó-Ortigosa ◽  
Lluís Costa-Tutusaus ◽  
Myriam Guerra-Balic

Background Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Methods Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). Results The reliability test for all of the indices showed high values (ICC, 0.98–0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99–1). Conclusions The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.


1988 ◽  
Vol 74 (2) ◽  
pp. 107-114
Author(s):  
D. J. Smith ◽  
R. J. Pethybridge ◽  
A Duggan

SummaryThe relationship between physical fitness, anthropometric measures, and the scores in three submaximal step tests have been evaluated in a group of 30 male subjects. Physical fitness was assessed as VO2max measured directly during uphill treadmill running. Each submaximal exercise test was of six minutes duration and the heart rate recorded during the last minute (fH6) constituted the test score. Significant negative correlation coefficients were found between VO2max and each test score while lean body mass, gross body weight and body surface area were allpositively correlated with VO2max (1/min). The score in the least severe step test was included with anthropometric measures in multiple linear regression analysis for the prediction of VO2max and a number of prediction equations were derived. It was found that when lean body mass is calculated from skinfold measurements and weight, VO2max can be calculated from the equation:VO2max(1/min) = 1.470 + 0.0614 × Lean Body mass −0.0131 × fH6This equation accounts for 73% of the total variation of VO2max. If lean body mass cannot be calculated, a combination of gross body weight and age plus fH6 gives the equation:VO2max = 3.614 + 0.0349 × Weight – 0.0177 × fH6−0.0161 × Ageaccounting for 66% of the variance. The test has the following advantages over those currently employed:It is simple to administer requiring 6 minutes of stepping onto a 32 cm platform—the height of a gymnasium bench—20 times per minute.Although ideally an assessment oflean body mass is required, gross body weight plus age is a good second best.It is submaximal, minimising the stress on the individual (mean heart rate achieved 121 beats per minute).Its accuracy in terms of its ability to predict maximal aerobic power is better than either the Ohio or Harvard University tests.It is suggested that this test could be used where maximal testing is contraindicated or where currently used tests are insufficiently accurate.


Sign in / Sign up

Export Citation Format

Share Document