scholarly journals Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1780 ◽  
Author(s):  
Kevin Stemmler ◽  
Rebecca Massimi ◽  
Andrea E. Kirkwood

Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the generaChlorellaandDictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains ofChlorellaandScenedesmuseach produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.

2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2010 ◽  
Vol 77 (1) ◽  
pp. 374-377 ◽  
Author(s):  
Shovon Mandal ◽  
Nirupama Mallick

ABSTRACTScenedesmus obliquuswas cultivated in three types of waste discharges to couple waste treatment with biodiesel production. The lipid pool accumulation was boosted to 1.0 g liter−1against 0.1 g liter−1for the control. The waste-grownS. obliquusshowed an increase in the content of the saturated fatty acid pool, which is desirable for good-quality biodiesel.


Author(s):  
Zahra Zarei Jeliani ◽  
Nasrin Fazelian ◽  
Morteza Yousefzadi

Abstract The aim of this work was to describe and compare the main fatty acids and biodiesel indices of some green and brown macroalgae (seaweeds) collected from the Persian Gulf, as an alternative raw material for renewable biodiesel production. The macroalgae showed low lipid content (< 10% DW) but marine macroalgae with total lipid content > 5% DW are a good source for biodiesel production. The total lipid content and saturated fatty acids (SFAs) of green algae were higher than that of brown algae, while higher accumulation of unsaturated fatty acids (USFAs) was observed in brown seaweeds. Further, the main fatty acid in all studied seaweeds was palmitic acid (C16:0), which was followed by oleic acid (C18:1). The results of this work showed that three of the green algae, especially C. sertularioides, could be a potential source of fatty acids for biodiesel production owing to their high total lipid content, high cold flow indices (long chain saturated factor, cold filter plugging point and cloud point) and a fatty acid profile rich in SFAs with a high amount of C18:1, which is suitable for oil-based bio products. In contrast, the brown seaweeds Sargassum boveanum and Sirophysalis trinodis lipid content had a high proportion of polyunsaturated fatty acids (PUFAs), which makes them suitable for replacing fish oil.


2017 ◽  
Vol 77 (4) ◽  
pp. 891-898 ◽  
Author(s):  
Maria Cristina Collivignarelli ◽  
Giorgio Bertanza ◽  
Alessandro Abbà ◽  
Silvestro Damiani

Abstract The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.


2016 ◽  
Vol 8 (2) ◽  
pp. 92
Author(s):  
Hamidou SENOU ◽  
Cai X. ZHENG ◽  
Gabriel SAMAKE ◽  
Mamadou B. TRAORE ◽  
Fousseni FOLEGA ◽  
...  

<p class="1Body">The methyl esters of fatty acids composition of the oil from <em>jatropha curcas</em> seeds were analyzed by gas chromatography-mass spectrometer GC-MS. Fourteen components were found to be representative with 99.52% of the total content of seed oils. The main constituents were unsaturated fatty acids (71.93%) and saturated fatty acids (27.59%). For the saturated fatty acids composition such as palmitic and stearic acid, the rate was 15.80% and 10.79%, respectively. Linoleic acid (39.58%) and oleic acid (30.41%) were obtained in highest concentration among the unsaturated fatty acids identified in the seeds oil of <em>Jatropha curcas</em> from Guizhou. This value also justifies the fluidity of the oil at room temperature. A high percentage of polyunsaturated fatty acids (39.58%) and a slightly lower rate of monounsaturated fatty acids (32.35%) were also observed. The seed oils profile of Guizhou <em>Jatropha curcas</em> presents the desirable fatty acid C14 to C18 and interesting features for the biodiesel production.</p>


2000 ◽  
Vol 41 (4-5) ◽  
pp. 1-4 ◽  
Author(s):  
J.J. Chen ◽  
D. McCarty ◽  
D. Slack ◽  
H. Rundle

The limitation of available land for wastewater treatment facilities has challenged environmental engineers in searching for efficient and effective treatment systems that will minimize space requirements for waste treatment. To meet these requirements, a fixed film biological process using a DeepBedTM filter for aerobic and anoxic treatment was developed. The innovative biotechnology uses sand as the media to which microorganisms attach and as the filter media for solids retention. The unique characteristics of the biosystem combine long sludge age and short hydraulic detention time and provide small footprints for the bioreactor. The novel technology has been successfully practiced for industrial and municipal wastewater treatment in three (3) continents. This article gives details of a US facility to treat coke plant effluent with high ammonia and phenol content, describes a plant in Taiwan for polishing plastic manufacturing wastewater by combining ozone and biofiltration, illustrates nitrogen removal from a semiconductor factory in Korea, and shows the results of a municipal treatment plant in Britain using BAF to pretreat peak loads from the dairy industry.


Sign in / Sign up

Export Citation Format

Share Document