scholarly journals New beaked whales from the late Miocene of Peru and evidence for convergent evolution in stem and crown Ziphiidae (Cetacea, Odontoceti)

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2479 ◽  
Author(s):  
Giovanni Bianucci ◽  
Claudio Di Celma ◽  
Mario Urbina ◽  
Olivier Lambert

The Ziphiidae (beaked whales) represent a large group of open-ocean odontocetes (toothed cetaceans), whose elusive and deep diving behavior prevents direct observation in their natural habitat. Despite their generally large body size, broad geographical distribution, and high species number, ziphiids thus remain poorly known. Furthermore, the evolutionary processes that have led to their extreme adaptations and impressive extant diversity are still poorly understood. Here we report new fossil beaked whales from the late Miocene of the Pisco Formation (southern Peru). The best preserved remains here described are referred to two new genera and species, the MessinianChavinziphius maxillocristatusand the TortonianChimuziphius coloradensis, based on skull remains from two marine vertebrate-rich localities: Cerro Los Quesos and Cerro Colorado, respectively.C. maxillocristatusis medium sized retains a complete set of functional lower teeth, and bears robust rostral maxillary crests similar to those of the extantBerardius. By contrast,C. coloradensisis small and characterized by large triangular nasals and moderately thickened premaxillae that dorsally close the mesorostral groove. Both species confirm the high past diversity of Ziphiidae, the richest cetacean family in terms of the number of genera and species. Our new phylogenetic and biogeographical analyses depart markedly from earlier studies in dividing beaked whales into two major clades: theMessapicetusclade, which, along with other stem ziphiids, once dominated the southeastern Pacific and North Atlantic; and crown Ziphiidae, the majority of which are found in deep-water regions of the Southern Ocean, with possible subsequent dispersal both globally (MesoplodonandZiphius) and to the cooler waters of the northern oceans (BerardiusandHyperoodon). Despite this relatively clear separation, both lineages seem to follow similar evolutionary trends, including (1) a progressive reduction of dentition; (2) an increase in the compactness and thickness of the rostral bones; (3) similar changes in facial morphology (e.g., elevation of the vertex); and (4) an increase of body size. We suggest that these trends may be linked to a convergent ecological shift to deep diving and suction feeding.

Behaviour ◽  
1990 ◽  
Vol 112 (3-4) ◽  
pp. 162-175 ◽  
Author(s):  
Alicia Mathis

AbstractIntraspecific interference competition associated with territoriality has been documented in laboratory studies of the red-backed salamander, Plethodon cinereus. I used laboratory and field experiments to study the effect of resource quality and body size on such competition. In an experiment in southwestern Virginia, cover objects (e.g., logs) from which the resident salamanders were removed were invaded significantly more often than cover objects from which the resident salamander was not removed. These data provide the first direct test of territoriality for a salamander in a natural habitat. Newly invading salamanders were significantly smaller than the original territorial residents. Therefore, large body size is an advantage in territorial encounters. Because cover objects are important resources for terrestrial salamanders, characteristics of the cover object may contribute to territory quality. In an experiment conducted during warm summer weather at the Virginia site, soil temperatures under large cover objects were significantly cooler than those under small cover objects or under the leaf litter. Large cover objects may therefore benefit the salamanders by providing a buffer zone between the salamander and extreme environmental temperatures on the forest floor. In both laboratory and field experiments, when salamanders were offered a choice between large and small cover objects, both large and small salamanders exhibited a significant preference for large cover objects. Also I censused cover objects in a natural mixed hardwood forest habitat during courting and noncourting seasons and, for both seasons, I found a significant positive correlation between the body size of the salamander and the size of the cover object that it occupied. I conclude that, in this natural forest habitat, there is intraspecific competition for high quality cover objects and larger individuals are more successful competitors than smaller individuals.


2015 ◽  
Vol 282 (1815) ◽  
pp. 20151530 ◽  
Author(s):  
Olivier Lambert ◽  
Alberto Collareta ◽  
Walter Landini ◽  
Klaas Post ◽  
Benjamin Ramassamy ◽  
...  

Although modern beaked whales (Ziphiidae) are known to be highly specialized toothed whales that predominantly feed at great depths upon benthic and benthopelagic prey, only limited palaeontological data document this major ecological shift. We report on a ziphiid–fish assemblage from the Late Miocene of Peru that we interpret as the first direct evidence of a predator–prey relationship between a ziphiid and epipelagic fish. Preserved in a dolomite concretion, a skeleton of the stem ziphiid Messapicetus gregarius was discovered together with numerous skeletons of a clupeiform fish closely related to the epipelagic extant Pacific sardine ( Sardinops sagax ). Based on the position of fish individuals along the head and chest regions of the ziphiid, the lack of digestion marks on fish remains and the homogeneous size of individuals, we propose that this assemblage results from the death of the whale (possibly via toxin poisoning) shortly after the capture of prey from a single school. Together with morphological data and the frequent discovery of fossil crown ziphiids in deep-sea deposits, this exceptional record supports the hypothesis that only more derived ziphiids were regular deep divers and that the extinction of epipelagic forms may coincide with the radiation of true dolphins.


2020 ◽  
Vol 29 (2) ◽  
pp. 278-283
Author(s):  
S.G. Ermilov

The oribatid mite subgenus Scheloribates (Topobates) Grandjean, 1958, is recorded from the Neotropical region for the first time. A new species of this subgenus is described from the leaf litter collected in Cayo Agua Island, Panama. Scheloribates (Topobates) panamaensis sp. nov. differs from its related species by the very large body size and presence of a strong ventrodistal process on the leg femora II–IV.


Author(s):  
Ricardo Wilches ◽  
William H Beluch ◽  
Ellen McConnell ◽  
Diethard Tautz ◽  
Yingguang Frank Chan

Abstract Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.


PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e3876 ◽  
Author(s):  
C. Jaco Klok ◽  
Jon F. Harrison

Author(s):  
Isain Zapata ◽  
M. Leanne Lilly ◽  
Meghan E. Herron ◽  
James A. Serpell ◽  
Carlos E. Alvarez

AbstractVery little is known about the etiology of personality and psychiatric disorders. Because the core neurobiology of many such traits is evolutionarily conserved, dogs present a powerful model. We previously reported genome scans of breed averages of ten traits related to fear, anxiety, aggression and social behavior in multiple cohorts of pedigree dogs. As a second phase of that discovery, here we tested the ability of markers at 13 of those loci to predict canine behavior in a community sample of 397 pedigree and mixed-breed dogs with individual-level genotype and phenotype data. We found support for all markers and loci. By including 122 dogs with veterinary behavioral diagnoses in our cohort, we were able to identify eight loci associated with those diagnoses. Logistic regression models showed subsets of those loci could predict behavioral diagnoses. We corroborated our previous findings that small body size is associated with many problem behaviors and large body size is associated with increased trainability. Children in the home were associated with anxiety traits; illness and other animals in the home with coprophagia; working-dog status with increased energy and separation-related problems; and competitive dogs with increased aggression directed at familiar dogs, but reduced fear directed at humans and unfamiliar dogs. Compared to other dogs, Pit Bull-type dogs were not defined by a set of our markers and were not more aggressive; but they were strongly associated with pulling on the leash. Using severity-threshold models, Pit Bull-type dogs showed reduced risk of owner-directed aggression (75th quantile) and increased risk of dog-directed fear (95th quantile). Our findings have broad utility, including for clinical and breeding purposes, but we caution that thorough understanding is necessary for their interpretation and use.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20201905
Author(s):  
Jesús Alcázar-Treviño ◽  
Mark Johnson ◽  
Patricia Arranz ◽  
Victoria E. Warren ◽  
Carlos J. Pérez-González ◽  
...  

Echolocating animals that forage in social groups can potentially benefit from eavesdropping on other group members, cooperative foraging or social defence, but may also face problems of acoustic interference and intra-group competition for prey. Here, we investigate these potential trade-offs of sociality for extreme deep-diving Blainville′s and Cuvier's beaked whales. These species perform highly synchronous group dives as a presumed predator-avoidance behaviour, but the benefits and costs of this on foraging have not been investigated. We show that group members could hear their companions for a median of at least 91% of the vocal foraging phase of their dives. This enables whales to coordinate their mean travel direction despite differing individual headings as they pursue prey on a minute-by-minute basis. While beaked whales coordinate their echolocation-based foraging periods tightly, individual click and buzz rates are both independent of the number of whales in the group. Thus, their foraging performance is not affected by intra-group competition or interference from group members, and they do not seem to capitalize directly on eavesdropping on the echoes produced by the echolocation clicks of their companions. We conclude that the close diving and vocal synchronization of beaked whale groups that quantitatively reduces predation risk has little impact on foraging performance.


Sign in / Sign up

Export Citation Format

Share Document