scholarly journals Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5448
Author(s):  
Konstantin A. Korotenko

Because of the environmental sensitivity of the Black Sea, as a semi-enclosed sea, any subsea oil spill can cause destructive impacts on the marine environment and beaches. Employing numerical modeling as a prediction tool is one of the most efficient methods to understand oil spill behavior under various environmental forces. In this regard, a coupled circulation/deepsea oil spill model has been applied to the Black Sea to address the behavior of the oil plume resulting from a representative hypothetical deepwater blowout. With climatological forcing, the hydrodynamic module based on DieCAST ocean circulation model realistically reproduces seasonally-varying circulation from basin-scale dominant structures to meso- and sub-mesoscale elements. The oil spill model utilizes pre-calculated DieCAST thermo-hydrodynamic fields and uses a Lagrangian tracking algorithm for predicting the displacement of a large number of seeded oil droplets, the sum of which forms the rising oil plume resulting from a deepwater blowout. Basic processes affecting the transport, dispersal of oil and its fate in the water column are included in the coupled model. A hypothetical oil source was set at the bottom, at the northwestern edge of the Shatsky Ridge in the area east of the Crimea Peninsula where the oil exploration/development is likely to be planned. Goals of the study are to elucidate the behavior of the subsea oil plume and assess scales of contamination of marine environment and coastlines resulting from potential blowouts. The two 20-day scenarios with the oil released by a hypothetical blowout were examined to reveal combined effects of the basin-scale current, near-shore eddies, and winds on the behavior of the rising oil plume and its spreading on the surface. Special attention is paid to the Caucasian near-shore anticyclonic eddy which is able to trap surfacing oil, detain it and deliver it to shores. The length of contaminated coastlines of vulnerable Crimean and Caucasian coasts are assessed along with amounts of oil beached and deposited.

2021 ◽  
Author(s):  
Salvatore Causio ◽  
Piero Lionello ◽  
Stefania Angela Ciliberti ◽  
Giovanni Coppini

<p>This study analyzes wave-currents interactions in the Black Sea basin focusing on deep water processes by using a coupled two-ways off-line numerical system, based on the ocean circulation model NEMO v4.0 and the third-generation wave model WaveWatchIII v5.16. The coupling between wave and hydrodynamical models is carried out at hourly frequency. The physical processes taken in consideration are: Stokes-Coriolis force, sea-state dependent momentum flux, wave induced vertical mixing, Doppler shift, and the stability parameter for the computation of effective wind speed. </p><p>The hydrodynamical model is implemented over the Black Sea at the horizontal resolution of about 3km and 31 vertical levels, with closed boundary at the Bosporus Strait. The impact of the Bosporus Strait on the Black Sea dynamics is modeled using a surface boundary condition, taking into account the barotropic transport, which balances the freshwater fluxes on monthly basis (Stanev and Beckers, 1999; Peneva et al., 2001; Ciliberti et al., 2021). Additionally, Mediterranean waters inflow is represented by applying a local damping to high resolution temperature and salinity profiles (Aydogdu et al., 2018) at the Bosporus exit.</p><p>The wave model adopts the WW3 implementation of the WAM Cycle4 model physics, with Ultimate Quickest propagation scheme and GSE alleviation, over the same spatial grid as the hydrodynamical model Wind input and dissipation are based on Ardhuin et al. (2010), wave-wave interactions are based on Discrete Interaction Approximation. The wave spectrum is discretized using 24 directional sectors, and 30 frequencies, with 10% increment starting from 0.055Hz. Validation and statistical analysis of the results have been carried out to compare coupled and uncoupled runs, aiming to identify the model set-up to upgrade in the future the near real time operational system.</p><p>The evaluation of the coupling impact on significant wave height and temperature shows BIAS reduction, and even slight improvement of RMSE.</p>


2021 ◽  
Vol 9 (8) ◽  
pp. 893
Author(s):  
Salvatore Causio ◽  
Stefania A. Ciliberti ◽  
Emanuela Clementi ◽  
Giovanni Coppini ◽  
Piero Lionello

In this study, we investigate wave-currents interaction for the first time in the Black Sea, implementing a coupled numerical system based on the ocean circulation model NEMO v4.0 and the third-generation wave model WaveWatchIII v5.16. The scope is to evaluate how the waves impact the surface ocean dynamics, through assessment of temperature, salinity and surface currents. We provide also some evidence on the way currents may impact on sea-state. The physical processes considered here are Stokes–Coriolis force, sea-state dependent momentum flux, wave-induced vertical mixing, Doppler shift effect, and stability parameter for computation of effective wind speed. The numerical system is implemented for the Black Sea basin (the Azov Sea is not included) at a horizontal resolution of about 3 km and at 31 vertical levels for the hydrodynamics. Wave spectrum has been discretised into 30 frequencies and 24 directional bins. Extensive validation was conducted using in-situ and satellite observations over a five-year period (2015–2019). The largest positive impact of wave-currents interaction is found during Winter while the smallest is in Summer. In the uppermost 200 m of the Black Sea, the average reductions of temperature and salinity error are about −3% and −6%, respectively. Regarding waves, the coupling enhanced the model skill, reducing the simulation error, about −2%.


2021 ◽  
Vol 252 ◽  
pp. 107247
Author(s):  
Tahsin Görmüş ◽  
Berna Ayat ◽  
Burak Aydoğan ◽  
Florin Tătui

2005 ◽  
Vol 35 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Birol Kara ◽  
Alan J. Wallcraft ◽  
Harley E. Hurlburt

Abstract A 1/25° × 1/25° cos(lat) (longitude × latitude) (≈3.2-km resolution) eddy-resolving Hybrid Coordinate Ocean Model (HYCOM) is introduced for the Black Sea and used to examine the effects of ocean turbidity on upper-ocean circulation features including sea surface height and mixed layer depth (MLD) on annual mean climatological time scales. The model is a primitive equation model with a K-profile parameterization (KPP) mixed layer submodel. It uses a hybrid vertical coordinate that combines the advantages of isopycnal, σ, and z-level coordinates in optimally simulating coastal and open-ocean circulation features. This model approach is applied to the Black Sea for the first time. HYCOM uses a newly developed time-varying solar penetration scheme that treats attenuation as a continuous quantity. This scheme includes two bands of solar radiation penetration, one that is needed in the top 10 m of the water column and another that penetrates to greater depths depending on the turbidity. Thus, it is suitable for any ocean general circulation model that has fine vertical resolution near the surface. With this scheme, the optical depth–dependent attenuation of subsurface heating in HYCOM is given by monthly mean fields for the attenuation of photosynthetically active radiation (kPAR) during 1997–2001. These satellite-based climatological kPAR fields are derived from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) data for the spectral diffuse attenuation coefficient at 490 nm (k490) and have been processed to have the smoothly varying and continuous coverage necessary for use in the Black Sea model applications. HYCOM simulations are driven by two sets of high-frequency climatological forcing, but no assimilation of ocean data is then used to demonstrate the importance of including spatial and temporal varying attenuation depths for the annual mean prediction of upper-ocean quantities in the Black Sea, which is very turbid (kPAR > 0.15 m−1, in general). Results are reported from three model simulations driven by each atmospheric forcing set using different values for the kPAR. A constant solar-attenuation optical depth of ≈17 m (clear water assumption), as opposed to using spatially and temporally varying attenuation depths, changes the surface circulation, especially in the eastern Black Sea. Unrealistic sub–mixed layer heating in the former results in weaker stratification at the base of the mixed layer and a deeper MLD than observed. As a result, the deep MLD off Sinop (at around 42.5°N, 35.5°E) weakens the surface currents regardless of the atmospheric forcing used in the model simulations. Using the SeaWiFS-based monthly turbidity climatology gives a shallower MLD with much stronger stratification at the base and much better agreement with observations. Because of the high Black Sea turbidity, the simulation with all solar radiation absorbed at the surface case gives results similar to the simulations using turbidity from SeaWiFS in the annual means, the aspect of the results investigated in this paper.


2021 ◽  
Vol 10 (4) ◽  
pp. 35-40
Author(s):  
Vasile RAŢᾸ ◽  
Liliana RUSU

Since the emergence of humanity, the marine environment has provided a safety net in many ways, has fostered socio-economic development, creating links between states, between continents. In the same time, it represents a priority source of food for a considerable percentage of the population. The same marine environment also creates solutions to current global problems, as a potential source of sustainable energy for the future. In recent decades, the stability of this ecosystem has been  considerably shaken by the various types of pollution resulting from human activities. The Black Sea is not immune to these results from economic activities, such as the transport of goods by water, which creates the context for the migration of living organisms from one geographical region to another. The threat of ecosystems has been intensified by the process of globalization, by changing the natural food chains following the accidental introduction of non- indigenous marine life by discharging ballast water from ship tanks. Risk assessment to limit the effects of this biohazard problem is the first step in a normal regional chain of action..


2021 ◽  
Author(s):  
Leonardo Lima ◽  
Stefania Angela Ciliberti ◽  
Ali Aydogdu ◽  
Romain Escudier ◽  
Simona Masina ◽  
...  

<p>Ocean reanalyses are becoming increasingly important to reconstruct and provide an overview of the ocean state from the past to the present-day. These products require advanced scientific methods and techniques to produce a more accurate ocean representation. In the scope of the Copernicus Marine Environment Monitoring Service (CMEMS), a new Black Sea (BS) reanalysis, BS-REA (BSE3R1 system), has been produced by using an advanced variational data assimilation method to combine the best available observations with a state-of-the-art ocean general circulation model. The hydrodynamical model is based on Nucleus for European Modeling of the Ocean (NEMO, v3.6), implemented for the BS domain with horizontal resolution of 1/27° x 1/36°, and 31 unevenly distributed vertical levels. NEMO is forced by atmospheric surface fluxes computed via bulk formulation and forced by ECMWF ERA5 atmospheric reanalysis product. At the surface, the model temperature is relaxed to daily objective analysis fields of sea surface temperature from CMEMS SST TAC. The exchange with Mediterranean Sea is simulated through relaxation of the temperature and salinity near Bosporus toward a monthly climatology computed from a high-resolution multi-year simulation, and the barotropic Bosporus Strait transport is corrected to balance the variations of the freshwater flux and the sea surface height measured by multi-satellite altimetry observations. A 3D-Var ocean data assimilation scheme (OceanVar) is used to assimilate sea level anomaly along-track observations from CMEMS SL TAC and available in situ vertical profiles of temperature and salinity from both SeaDataNet and CMEMS INS TAC products. Comparisons against the previous Black Sea reanalysis (BSE2R2 system) show important improvements for temperature and salinity, such that errors have significantly decreased (about 50%). Temperature fields present a continuous warming in the layer between 25-150 m, within which there is the presence of the Black Sea Cold Intermediate Layer (CIL). SST exhibits a positive bias and relatively higher root mean square error (RMSE) values are present in the summer season. Spatial maps of sea level anomaly reveal the largest RMSE close to the shelf areas, which are related to the mesoscale activity along the Rim current. The BS-REA catalogue includes daily and monthly means for 3D temperature, salinity, and currents and 2D sea surface height, bottom temperature, mixed layer fields, from Jan 1993 to Dec 2019.  The BSE3R1 system has produced very accurate estimates which makes it very suitable for assessing more realistic climate trends and indicators for important ocean properties.</p>


2003 ◽  

Monograph is prepared on the basis of the materials collected in near-shore waters of Crimea in 2003, and the retrospective data. Modern condition of biological diversity in near-shore zone of Crimea is shown on the basis of analysis of qualitative and quantitative composition of micro- and zooplankton, phyto- and zoobenthos, ichthyofauna and parasite fauna; the recommendations on conservation of biological diversity are given. Responses of biota on the appearance of new species in communities and on the impact of some anthropogenic factors are analyzed. Characteristics of the Black Sea plankton bioluminescents and the bioluminescence field forming by them in neritic zone of Crimea are shown. Lists of species of main groups of flora and fauna from the different regions of near-shore waters of Crimea are made.


Author(s):  
M. Grégoire ◽  
J.-M. Beckers ◽  
J. C. J. Nihoul ◽  
E. Stanev

Author(s):  
Iryna Makarenko

In this chapter, the role of the Black Sea Commission in the preservation of marine environment will be considered. Particular emphasis will be placed on the activities related to management of the marine living resources, the legal gaps in the documents and institutional structure, as well the current trends and challenges on the regional and global level. An overview of relevant Black Sea Commission's observers and partners will be provided; existing and possible future arrangements with them will be further described and analyzed. Some concrete recommendations on the improvements in the management of marine living resources in the Black Sea basin will be proposed.


Sign in / Sign up

Export Citation Format

Share Document