scholarly journals The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic Escherichia coli in İzmir province, Turkey

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5470 ◽  
Author(s):  
Elif Bozcal ◽  
Vahap Eldem ◽  
Sohret Aydemir ◽  
Mikael Skurnik

Background Extraintestinal pathogenic Escherichia coli (ExPEC) is an important bacterium and responsible for many bloodstream infections, including urinary tract infections and even fatal bacteremia. The aim of this research was to investigate whether ExPEC strains isolated from Turkish blood cultures have a relationship between 16S rRNA based phylogenetic clusters and antibiotic resistance profiles, virulence factors or clonal lineages. Methods Phenotypically identified ExPEC blood culture isolates (n = 104) were included in this study. The 16S rRNA partial sequence analysis was performed for genotypic identification of ExPEC isolates. Antibiotic susceptibility and Extended-Spectrum β-Lactamase testing of isolates were performed. Phylogenetic classification (A, B1, B2 and D), Multi Locus Sequence Typing analysis and virulence-associated genes were investigated. Results Based on 16S rRNA partial sequence analysis, 97 out of 104 (93.26%) ExPEC isolates were confirmed as E. coli. Ampicillin (74.22%) and cefuroxime axetil (65.97%) resistances had the highest frequencies among the ExPEC isolates. In terms of phylogenetic classification of ExPEC, D (38.14%, 37/97) was the most prevalent group after A (29.89%, 29/97), B2 (20.61%, 20/97), and B1 (11.34%, 11/97). The sequence types of the 20 ExPEC isolates belonging to the B2 phylogenetic group were analyzed by Multi Locus Sequence Typing. Ten isolates out of 20 (50.0%) were identified as ST131. The other STs were ST95 (n = 1), ST14 (n = 1), ST10 (n = 1), ST69 (n = 1), ST1722 (n = 2), ST141 (n = 1), ST88 (n = 1), ST80 (n = 1), and ST998 (n = 1). Of the ST131 strains, six (60%, 6/10) represented serogroup O25. The most common virulence factor genes were serum resistance factor gene, traT (55.7%) aerobactin siderophore receptor and yersiniabactin encoding genes iutA (45.3%) and fyuA (50.5%), respectively. In addition, PAI (41.2%), iroN (23.7%), hlyA (15.4%), kpsII (13.4%), ompT (13.4%), papG (12.4%), iss (9.3%), cnf1 (7.2%), ibeA (2.06%), and sfaS (2.06%) genes were present in the ExPEC isolates. Conclusion The 16S rRNA-based phylogenetic relationship tree analysis showed that a large cluster was present among 97 ExPEC isolates along with related reference strains. There were 21 main clusters with 32 closely related subclusters. Based on our findings, different clonal lineages of ExPEC can display different antibiotic susceptibilities and virulence properties. We also concluded that virulence factors were not distributed depending on phylogenetic groups (A, B1, B2, and D). The ExPEC isolates belonging to the same phylogenetic group and sequence type could display different resistance and virulence characteristics.

2021 ◽  
pp. 2410-2418
Author(s):  
Waleed Younis ◽  
Sabry Hassan ◽  
Hams M. A. Mohamed

Background and Aim: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. Materials and Methods: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. Results: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to β-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. Conclusion: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes.


2016 ◽  
Vol 31 (4) ◽  
Author(s):  
Elif Bozcal

Extraintestinal pathogenic <em>Escherichia coli</em> (ExPEC) is a universal pathogen which causes variety of diseases that impact on people of all ages. ExPEC strains are genetically diverse and associated virulence factors contribute to the wide spectrum of infections, ranging from urinary tract infections to fatal bacteremia. During the last decade, ExPEC strains have been increasingly reported in Turkey. The development of antibiotic resistance by ExPEC strains, such as extended spectrum beta-lactamase, has important clinical consequences. Studying the distribution and virulence factors of various ExPEC strains will be enhancing our understanding of ExPEC epidemiology and prevalence.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Mostafa Boroumand Boroumand ◽  
Mohsen Naghmachi ◽  
Mohammad Amin Ghatee

Background: Many bacteria can cause urinary tract infections (UTIs), among which Escherichia coli is the most common causative agent. E. coli strains are divided into eight phylogenetic groups based on the new Quadroplex-PCR method, which are different in terms of patterns of resistance to antibiotics, virulence, and environmental characteristics. Objectives: This study aimed to determine the phylogenetic groups and the prevalence of drug resistance genes in E. coli strains causing UTIs. Methods: In this descriptive cross-sectional study, 129 E. coli isolates obtained from the culture of patients with UTIs were evaluated for phylogenetic groups using the new method of Clermont et al. The identification of phylogenetic groups and antibiotic resistance genes was performed using the multiplex polymerase chain reaction (PCR) method. Results: In this study, concerning the distribution of phylogenetic groups among E. coli isolates, the phylogenetic group B2 (36.4%) was the most common phylogenetic group, followed by phylogroups C (13.2%), clade I (10.1%), D (9.3%), and A (3.1%) while groups B1 and F were not observed in any of the isolates, and 20.2% had an unknown state. Also, out of 129 E. coli isolates, the total frequency of tetA, tetB, sul1, sul2, CITM, DfrA, and qnr resistance genes was 59.7%, 66.7, 69, 62, 30.2, 23.3, and 20.2%, respectively. In this study, there was a significant relationship between antibiotics (P = 0.026), cefotaxime (P = 0.003), and nalidixic acid (P = 0.044) and E. coli phylogenetic groups. No significant relationship was observed between E. coli phylogenetic groups and antibiotic resistance genes. Conclusions: The results of this study showed that strains belonging to group B2 had the highest prevalence among other phylogroups, and also, the frequency of antibiotic resistance genes and drug-resistant isolates had a higher prevalence in this phylogroup. These results show that phylogroup B2 has a more effective role in causing urinary tract infections compared to other phylogroups, and this phylogroup can be considered a genetic reservoir of antibiotic resistance.


2021 ◽  
Vol 2 (2) ◽  
pp. 63-73
Author(s):  
Kenneth Ssekatawa ◽  
Denis K. Byarugaba ◽  
Jesca L. Nakavuma ◽  
Charles D. Kato ◽  
Francis Ejobi ◽  
...  

Escherichia coli has been implicated as one of the main etiological agents of diarrhea, urinary tract infections, meningitis and septicemia worldwide. The ability to cause diseases is potentiated by presence of virulence factors. The virulence factors influence the capacity of E. coli to infect and colonize different body systems. Thus, pathogenic E. coli are grouped into DEC strains that are mainly clustered in phylogenetic group B1 and A; ExPEC belonging to A, B2 and D. Coexistence of virulence and beta-lactamase encoding genes complicates treatment outcomes. Therefore, this study aimed at presenting the carbapenem resistance (CR) profiles among pathogenic E. coli. This was a retrospective cross-sectional study involving use of 421 archived E. coli clinical isolates collected in 2019 from four Uganda tertiary hospitals. The isolates were subjected to antibiotics sensitivity assays to determine phenotypic resistance. Four sets of multiplex PCR were performed to detect CR genes, DEC pathotypes virulence genes, ExPEC PAI and the E. coli phylogenetic groups. Antibiotic susceptibility revealed that all the 421 E. coli isolates used were MDR as they exhibited 100% resistance to more than one of the first-line antibiotics. The study registered phenotypic and genotypic CR prevalence of 22.8% and 33.0% respectively. The most predominant gene was blaOXA-48 with genotypic frequency of 33.0%, then blaVIM (21.0%), blaIMP (16.5%), blaKPC (14.8%) and blaNDM (14.8%). Spearman’s correlation revealed that presence of CR genes was highly associated with phenotypic resistance. Furthermore, of 421 MDR E. coli isolates, 19.7% harboured DEC virulence genes, where EPEC recorded significantly higher prevalence (10.8%) followed by S-ETEC (3.1%), STEC (2.9%), EIEC (2.0%) and L-ETEC (2.0%). Genetic analysis characterized 46.1% of the isolates as ExPEC and only PAI IV536 (33.0%) and PAI IICFT073 (13.1%) were detected. Phylogenetic group B2 was predominantly detected (41.1%), followed by A (30.2%), B1(21.6%), and D (7.1%). Furthermore, 38.6% and 23.1% of the DEC and ExPEC respectively expressed phenotypic resistance. Our results exhibited significant level of CR carriage among the MDR DEC and ExPEC clinical isolates belonging to phylogenetic groups B1 and B2 respectively. Virulence and CR genetic factors are mainly located on mobile elements. Thus, constitutes a great threat to the healthcare system as this promotes horizontal gene transfer.


2020 ◽  
Author(s):  
Kenneth Ssekatawa ◽  
Denis K Byarugaba ◽  
Jesca L. Nakavuma ◽  
Charles Drago Kato ◽  
Francis Ejobi ◽  
...  

Abstract Background: Escherichia coli has been implicated as one of the main etiological agents of diarrhea, urinary tract infections, meningitis and septicemia worldwide. The ability to cause diseases is potentiated by presence of virulence factors. The virulence factors influence the capacity of E. coli to infect and colonize different body systems. Thus, pathogenic E. coli are grouped into DEC strains that are mainly clustered in phylogenetic group B1 and A; ExPEC belonging to A, B2 and D. Coexistence of virulence and beta-lactamase encoding genes complicates treatment outcomes. Therefore, this study aimed at presenting the CR profiles among pathogenic E. coli. Methods: This was a retrospective cross-sectional study involving use of archived E. coli clinical isolates collected in 2019 from four Ugandan tertiary hospitals. The isolates were subjected to antibiotics sensitivity assays to determine phenotypic resistance. Four sets of multiplex PCR were performed to detect CR genes, DEC pathotypes virulent genes, ExPEC PAI and the E. coli phylogenetic groups. Results: Antibiotic susceptibility revealed that all the 421 E. coli isolates used were MDR as they exhibited 100% resistance to more than one of the first-line antibiotics. The study registered phenotypic and genotypic CR prevalence of 22.8% and 33.0% respectively. The most predominant gene was blaOXA-48 with genotypic frequency of 33.0%, then blaVIM(21.0%), blaIMP(16.5%), blaKPC(14.8%) and blaNDM(14.8%). Spearman’s correlation revealed that presence of CR genes was highly associated with phenotypic resistance. Furthermore, of 421 MDR E. coli isolates, 19.7% harboured DEC virulent genes, where EPEC recorded significantly higher prevalence (10.8%) followed by S-ETEC(3.1%), STEC(2.9%), EIEC (2.0%) and L-ETEC(2.0%). Genetic analysis characterized 46.1% of the isolates as ExPEC and only PAI IV536(33.0%) and PAI IICFT073(13.1%) were detected. Phylogenetic group B2 was predominantly detected (41.1%), followed by A(30.2%), B1(21.6%), and D(7.1%). Furthermore, 38.6% and 23.1% of the DEC and ExPEC respectively expressed phenotypic resistance.Conclusion: Our results exhibited significant level of CR carriage among the MDR DEC and ExPEC clinical isolates belonging to phylogenetic groups B1 and B2 respectively. Virulence and CR genetic factors are mainly located on mobile elements. Thus, constitutes a great threat to the healthcare system as it promotes horizontal gene transfer.


2021 ◽  
Author(s):  
Mohammed Allami ◽  
Masoumeh Bahreini ◽  
Mohammad Reza Sharifmoghadam

Abstract Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 fimbria (fimH), A-fimbrial adhesion (afa), hemolysin (hly), fimbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.


Sign in / Sign up

Export Citation Format

Share Document