Functions ofCandida albicanscell wall glycosidasesDfg5pandDcw1pin biofilm formation and HOG MAPK pathway
BackgroundCandida albicansis a commensal fungus that inhabits the oral mucosal surface and causes oral and systemic candidiasis. Oral candidiasis most commonly occurs in patients with AIDS, denture wearers and newborn children. Systemic candidiasis occurs mainly in immunocompromised patients and patients admitted to hospitals for prolonged periods.C. albicanshomologous genes,DFG5andDCW1, encode for two closely related cell wall proteins with putative glycosyltransferase enzyme activity and C-terminal GPI-anchors. Past studies have shown that individualDFG5andDCW1mutations are viable but simultaneous deletion ofDFG5andDCW1inC. albicansresults in lethality. However, the exact functions of these cell wall based enzymes, which represent potential drug targets, are not understood.MethodsC. albicansDFG5/DCW1heterologous and conditional double mutant strains were assessed for growth and biofilm formation in comparison to wild type and parental strains. Cell wall and heat stress susceptibility of the mutant and control strains were assessed using agar spotting assays. Growth was assessed under normal and osmotic stress conditions along with light microscopy imaging. Biofilm dry weight and microscopic imaging analysis of biofilms was performed. Hypha formation in response to serum was analyzed using light microscopy imaging. Western blot analysis of mutant strains and control strains was performed to assess Hog1 basal levels and phosphorylation status.ResultsAnalysis of the heterologous mutants indicated that Dfg5p is more important for growth while Dcw1p appeared to play a role in cell wall integrity response. The conditional double mutant was observed to be less resistant to cell wall stress. However, growth of the mutants was similar under control and osmotic stress conditions. The mutants were also able to grow similar to wild type under heat stress. Biofilm formation was reduced in the mutants whereDFG5was deleted or suppressed. Hyphal morphogenesis was reduced although germ tube formation was observed in the biofilms of the mutant strains. Basal Hog1 protein levels were reduced or absent in theDFG5andDCW1mutants. However, osmotic stress was able to induce Hog1 protein levels comparable to wild type. Hog1 phosphorylation appeared to be slightly reduced although not significantly. In addition to biofilm assays, serum dose response imaging analysis indicated that hyphae formation inDFG5andDCW1mutants was defective.ConclusionsThese data indicate thatDFG5andDCW1are required for hyphal morphogenesis and biofilm formation inC. albicans. These functions may be regulated via basal Hog1 MAPK which is required for transcriptional regulation of chitin synthesis.