scholarly journals Sevoflurane postconditioning alleviates hypoxia-reoxygenation injury of cardiomyocytes by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7165 ◽  
Author(s):  
Long Yang ◽  
Jianjiang Wu ◽  
Peng Xie ◽  
Jin Yu ◽  
Xin Li ◽  
...  

Background Sevoflurane postconditioning (SpostC) can alleviate hypoxia-reoxygenation injury of cardiomyocytes; however, the specific mechanism remains unclear. This study aimed to investigate whether SpostC promotes mitochondrial autophagy through the hypoxia-inducible factor-1 (HIF-1)/BCL2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) signaling pathway to attenuate hypoxia-reoxygenation injury in cardiomyocytes. Methods The H9C2 cardiomyocyte hypoxia/reoxygenation model was established and treated with 2.4% sevoflurane at the beginning of reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis. Mitochondrial ultrastructural and autophagosomes were observed by transmission electron microscope. Western blotting was used to examine the expression of HIF-1, BNIP3, and Beclin-1 proteins. The effects of BNIP3 on promoting autophagy were determined using interfering RNA technology to silence BNIP3. Results Hypoxia-reoxygenation injury led to accumulation of autophagosomes in cardiomyocytes, and cell viability was significantly reduced, which seriously damaged cells. Sevoflurane postconditioning could upregulate HIF-1α and BNIP3 protein expression, promote autophagosome clearance, and reduce cell damage. However, these protective effects were inhibited by 2-methoxyestradiol or sinBNIP3. Conclusion Sevoflurane postconditioning can alleviate hypoxia-reoxygenation injury in cardiomyocytes, and this effect may be achieved by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2659 ◽  
Author(s):  
Jin Yu ◽  
Jianjiang Wu ◽  
Peng Xie ◽  
Yiliyaer Maimaitili ◽  
Jiang Wang ◽  
...  

Background Anesthetic postconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders a tissue more resistant to subsequent ischemic/reperfusion event. Sevoflurane postconditioning (SPostC) has been shown to exert cardioprotection against ischemia/reperfusion injury, but the underlying mechanism is unclear. We hypothesized that SPostC protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury by maintaining/restoring mitochondrial morphological integrity, a critical determinant of cell fate. Methods Primary cultures of neonatal rat cardiomyocytes (NCMs) were subjected to H/R injury (3 h of hypoxia followed by 3 h reoxygenation). Intervention with SPostC (2.4% sevoflurane) was administered for 15 min upon the onset of reoxygenation. Cell viability, Lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were assessed after intervention. Mitochondrial fusion and fission regulating proteins (Drp1, Fis1, Mfn1, Mfn2 and Opa1) were assessed by immunofluorescence staining and western blotting was performed to determine the level of protein expression. Results Cardiomyocyte H/R injury resulted in significant increases in LDH release and cell death that were concomitant with reduced cell viability and reduced mitochondrial interconnectivity (mean area/perimeter ratio) and mitochondrial elongation, and with reduced mitochondrial membrane potential and increased mPTP opening. All the above changes were significantly attenuated by SPostC. Furthermore, H/R resulted in significant reductions in mitochondrial fusion proteins Mfn1, Mfn2 and Opa1 and significant enhancement of fission proteins Drp1 and Fis1. SPostC significantly enhanced Mfn2 and Opa1 and reduced Drp1, without significant impact on Mfn1 and Fis1. Conclusions Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury (HRI) by restoring mitochondrial fusion/fission balance and morphology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Quan Qiu ◽  
Tao Shen ◽  
Xiaoxue Yu ◽  
Na Jia ◽  
Kaiyi Zhu ◽  
...  

Regulated necrosis (necroptosis) is crucially involved in cardiac ischaemia-reperfusion injury (MIRI). The aim of our study is to investigate whether shock wave therapy (SWT) is capable of exerting protective effects by inhibiting necroptosis during myocardial ischaemia-reperfusion (I/R) injury and the possible role of autophagy in this process. We established a hypoxia/reoxygenation (H/R) model in vitro using HL-1 cells to simulate MIRI. MTS assays and LDH cytotoxicity assay were performed to measure cell viability and cell damage. Annexin V/PI staining was used to determine apoptosis and necrosis. Western blotting was performed to assess the changes in cell signaling pathways associated with autophagy, necroptosis, and apoptosis. Reactive oxygen species (ROS) production was detected using DHE staining. Autophagosome generation and degradation (autophagic flux) were analysed using GFP and RFP tandemly tagged LC3 (tfLC3). HL-1 cells were then transfected with p62/SQSTM1 siRNA in order to analyse its role in cardioprotection. Our results revealed that SWT increased cell viability in the H/R model and decreased receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 expression. ROS production was also inhibited by SWT. Moreover, SWT decreased Beclin1 expression and the ratio of LC3-II/LC3-I following H/R. Simultaneously, in the tfLC3 assay, the SWT provoked a decrease in the cumulative autophagosome abundance. siRNA-mediated knockdown of p62 attenuated H/R-induced necroptosis, and SWT did not exert additive effects. Taken together, SWT ameliorated H/R injury by inhibiting necroptosis. SWT also relieved the blockade of autophagic flux in response to H/R injury. The restoration of autophagic flux by SWT might contribute to its cardioprotective effect on necroptosis following H/R injury.


1991 ◽  
Vol 261 (4) ◽  
pp. G602-G607 ◽  
Author(s):  
B. Rymsa ◽  
J. F. Wang ◽  
H. de Groot

Primary cultures of rat liver Kupffer cells generated large amounts of superoxide anion radical (O2-.) when subjected to reoxygenation after a hypoxic period of at least 2 h. O2-. formation reached its maximum rate of approximately 25 nmol/10(6) cells within 1 h after reoxygenation. Two to four hours after reoxygenation, the number of injured cells began to increase and after 10 h approximately 60% of the cells were dead. During the period of O2-. release no significant difference in cell viability was observed between reoxygenated and hypoxically incubated cells, indicating a distinct time lag between O2-. release and onset of cell damage. Addition of diphenyliodonium, a specific inhibitor of the neutrophilic NADPH oxidase, to the Kupffer cells just before reoxygenation diminished both O2-. formation and cell injury up to 70%. Reoxygenation injury was completely prevented when superoxide dismutase and catalase were added immediately before reoxygenation. The results indicate that Kupffer cells subjected to hypoxia-reoxygenation generate a burst of reactive oxygen species and that this kind of "activation," probably by activating the NADPH oxidase, contributes to the self-destruction of the cells.


2019 ◽  
Vol 20 (4) ◽  
pp. 998 ◽  
Author(s):  
Yao-Chung Chuang ◽  
Shang-Der Chen ◽  
Chung-Yao Hsu ◽  
Shu-Fang Chen ◽  
Nai-Ching Chen ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known to regulate mitochondrial biogenesis. Resveratrol is present in a variety of plants, including the skin of grapes, blueberries, raspberries, mulberries, and peanuts. It has been shown to offer protective effects against a number of cardiovascular and neurodegenerative diseases, stroke, and epilepsy. This study examined the neuroprotective effect of resveratrol on mitochondrial biogenesis in the hippocampus following experimental status epilepticus. Kainic acid was microinjected into left hippocampal CA3 in Sprague Dawley rats to induce bilateral prolonged seizure activity. PGC-1α expression and related mitochondrial biogenesis were investigated. Amounts of nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), cytochrome c oxidase 1 (COX1), and mitochondrial DNA (mtDNA) were measured to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis machinery after prolonged seizure were found in CA3. Resveratrol increased expression of PGC-1α, NRF1, and Tfam, NRF1 binding activity, COX1 level, and mtDNA amount. In addition, resveratrol reduced activated caspase-3 activity and attenuated neuronal cell damage in the hippocampus following status epilepticus. These results suggest that resveratrol plays a pivotal role in the mitochondrial biogenesis machinery that may provide a protective mechanism counteracting seizure-induced neuronal damage by activation of the PGC-1α signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document