scholarly journals Comprehensive analysis reveals a metabolic ten-gene signature in hepatocellular carcinoma

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9201
Author(s):  
Zhipeng Zhu ◽  
Lulu Li ◽  
Jiuhua Xu ◽  
Weipeng Ye ◽  
Borong Chen ◽  
...  

Background Due to the complicated molecular and cellular heterogeneity in hepatocellular carcinoma (HCC), the morbidity and mortality still remains high level in the world. However, the number of novel metabolic biomarkers and prognostic models could be applied to predict the survival of HCC patients is still small. In this study, we constructed a metabolic gene signature by systematically analyzing the data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). Methods Differentially expressed genes (DEGs) between tumors and paired non-tumor samples of 50 patients from TCGA dataset were calculated for subsequent analysis. Univariate cox proportional hazard regression and LASSO analysis were performed to construct a gene signature. The Kaplan–Meier analysis, time-dependent receiver operating characteristic (ROC), Univariate and Multivariate Cox regression analysis, stratification analysis were used to assess the prognostic value of the gene signature. Furthermore, the reliability and validity were validated in four types of testing cohorts. Moreover, the diagnostic capability of the gene signature was investigated to further explore the clinical significance. Finally, Go enrichment analysis and Gene Set Enrichment Analysis (GSEA) have been performed to reveal the different biological processes and signaling pathways which were active in high risk or low risk group. Results Ten prognostic genes were identified and a gene signature were constructed to predict overall survival (OS). The gene signature has demonstrated an excellent ability for predicting survival prognosis. Univariate and Multivariate analysis revealed the gene signature was an independent prognostic factor. Furthermore, stratification analysis indicated the model was a clinically and statistically significant for all subgroups. Moreover, the gene signature demonstrated a high diagnostic capability in differentiating normal tissue and HCC. Finally, several significant biological processes and pathways have been identified to provide new insights into the development of HCC. Conclusion The study have identified ten metabolic prognostic genes and developed a prognostic gene signature to provide more powerful prognostic information and improve the survival prediction for HCC.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


2021 ◽  
Author(s):  
Hong Yu ◽  
Shao Wang ◽  
Tao Zhou ◽  
Jia Sun ◽  
Tian Qi ◽  
...  

Abstract Background: Even though treatment outcomes for hepatocellular carcinoma patients have significantly improved, prognostic clinical evaluation remains a substantial challenge due to the heterogeneity and complexity of cancer. Accumulating evidence has revealed that the tumor immune microenvironment is critical for progression and prognosis of hepatocellular carcinoma. A powerful predictive model could assist physicians to better monitor patient treatment outcomes and improve overall survival rates. Therefore, we introduced tumor immune-related genes into a model that could be used for patient risk classification. Results: First, the Single-sample gene set enrichment analysis (ssGSEA) and Weighted gene co-expression networks construction (WGCNA) methods were applied to identify highly associated immunity genes. Following this, a multi-immune-related gene-based signature determined by The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to determine risk stratification. In addition, this predictive model was evaluated according to its performance as a prognostic model in the training and testing datasets. Furthermore, tumor mutation burden and biological enrichment analysis were applied to reveal the potential mechanisms through which the gene signature functions. Conclusion: In conclusion, our four-gene signature model may be clinically applied in hepatocellular carcinoma patients at high risk of mortality for personalized therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenli Li ◽  
Jun Liu ◽  
Hetong Zhao

Chaperonin containing TCP-1 (T-complex protein 1) (CCT) is a large molecular weight complex that contains nine subunits (TCP1, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT6B, CCT7, CCT8). This study aimed to reveal key genes which encode CCT subunits for prognosis and establish prognostic gene signatures based on CCT subunit genes. The data was downloaded from The Cancer Genome Atlas, International Cancer Genome Consortium and Gene Expression Omnibus. CCT subunit gene expression levels between tumor and normal tissues were compared. Corresponding Kaplan-Meier analysis displayed a distinct separation in the overall survival of CCT subunit genes. Correlation analysis, protein-protein interaction network, Gene Ontology analysis, immune cells infiltration analysis, and transcription factor network were performed. A nomogram was constructed for the prediction of prognosis. Based on multivariate Cox regression analysis and shrinkage and selection method for linear regression model, a three-gene signature comprising CCT4, CCT6A, and CCT6B was constructed in the training set and significantly associated with prognosis as an independent prognostic factor. The prognostic value of the signature was then validated in the validation and testing set. Nomogram including the signature showed some clinical benefit for overall survival prediction. In all, we built a novel three-gene signature and nomogram from CCT subunit genes to predict the prognosis of hepatocellular carcinoma, which may support the medical decision for HCC therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qingmiao Shi ◽  
Chen Xue ◽  
Xin Yuan ◽  
Yuting He ◽  
Zujiang Yu

Abstract Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. N1-methyladenosine (m1A), a methylation modification on RNA, is gaining attention for its role across diverse biological processes. However, m1A-related regulatory genes expression, its relationship with clinical prognosis, and its role in HCC remain unclear. In this study, we utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database to investigate alterations within 10 m1A-related regulatory genes and observed a high mutation frequency (23/363). Cox regression analysis and least absolute shrinkage and selection operator were used to explore the association between m1A-related regulatory genes expression and HCC patient survival and identified four regulators that were remarkably associated with HCC patient prognosis. Additionally, an independent cohort from International Cancer Genome Consortium was studied to validate our discoveries and found to be consistent with those in the TCGA dataset. In terms of mechanism, gene set enrichment analysis linked these four genes with various physiological roles in cell division, the MYC pathway, protein metabolism, and mitosis. Kyoto Encyclopedia of Genes and Genomes analysis revealed that PI3K/Akt signaling pathway had potential relevance to m1A-related regulatory genes in HCC. These findings indicate that m1A-related regulatory genes may play crucial roles in regulating HCC progression and be exploited for diagnostic and prognostic purposes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dengliang Lei ◽  
Yue Chen ◽  
Yang Zhou ◽  
Gangli Hu ◽  
Fang Luo

BackgroundHepatocellular carcinoma (HCC) is one of the world’s most prevalent and lethal cancers. Notably, the microenvironment of tumor starvation is closely related to cancer malignancy. Our study constructed a signature of starvation-related genes to predict the prognosis of liver cancer patients.MethodsThe mRNA expression matrix and corresponding clinical information of HCC patients were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to distinguish different genes in the hunger metabolism gene in liver cancer and adjacent tissues. Gene Set Enrichment Analysis (GSEA) was used to identify biological differences between high- and low-risk samples. Univariate and multivariate analyses were used to construct prognostic models for hunger-related genes. Kaplan-Meier (KM) and receiver-operating characteristic (ROC) were used to assess the model accuracy. The model and relevant clinical information were used to construct a nomogram, protein expression was detected by western blot (WB), and transwell assay was used to evaluate the invasive and metastatic ability of cells.ResultsFirst, we used univariate analysis to identify 35 prognostic genes, which were further demonstrated to be associated with starvation metabolism through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We then used multivariate analysis to build a model with nine genes. Finally, we divided the sample into low- and high-risk groups according to the median of the risk score. KM can be used to conclude that the prognosis of high- and low-risk samples is significantly different, and the prognosis of high-risk samples is worse. The prognostic accuracy of the 9-mRNA signature was also tested in the validation data set. GSEA was used to identify typical pathways and biological processes related to 9-mRNA, cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway, as well as biological processes related to the model. As evidenced by WB, EIF2S1 expression was increased after starvation. Overall, EIF2S1 plays an important role in the invasion and metastasis of liver cancer.ConclusionsThe 9-mRNA model can serve as an accurate signature to predict the prognosis of liver cancer patients. However, its mechanism of action warrants further investigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jun Liu ◽  
Jianjun Lu ◽  
Zhanzhong Ma ◽  
Wenli Li

Background. Hepatocellular carcinoma (HCC) is a common cancer with an extremely high mortality rate. Therefore, there is an urgent need in screening key biomarkers of HCC to predict the prognosis and develop more individual treatments. Recently, AATF is reported to be an important factor contributing to HCC. Methods. We aimed to establish a gene signature to predict overall survival of HCC patients. Firstly, we examined the expression level of AATF in the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and the International Union of Cancer Genome (ICGC) databases. Genes coexpressed with AATF were identified in the TCGA dataset by the Poisson correlation coefficient and used to establish a gene signature for survival prediction. The prognostic significance of this gene signature was then validated in the ICGC dataset and used to build a combined prognostic model for clinical practice. Results. Gene expression data and clinical information of 2521 HCC patients were downloaded from three public databases. AATF expression in HCC tissue was higher than that in matched normal liver tissues. 644 genes coexpressed with AATF were identified by the Poisson correlation coefficient and used to establish a three-gene signature (KIF20A, UCK2, and SLC41A3) by the univariate and multivariate least absolute shrinkage and selection operator Cox regression analyses. This three-gene signature was then used to build a combined nomogram for clinical practice. Conclusion. This integrated nomogram based on the three-gene signature can predict overall survival for HCC patients well. The three-gene signature may be a potential therapeutic target in HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peng Liu ◽  
Jinhong Wei ◽  
Feiyu Mao ◽  
Zechang Xin ◽  
Heng Duan ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide and its incidence continues to increase year by year. Endoplasmic reticulum stress (ERS) caused by protein misfolding within the secretory pathway in cells and has an extensive and deep impact on cancer cell progression and survival. Growing evidence suggests that the genes related to ERS are closely associated with the occurrence and progression of HCC. This study aimed to identify an ERS-related signature for the prospective evaluation of prognosis in HCC patients. RNA sequencing data and clinical data of patients from HCC patients were obtained from The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC). Using data from TCGA as a training cohort (n=424) and data from ICGC as an independent external testing cohort (n=243), ERS-related genes were extracted to identify three common pathways IRE1, PEKR, and ATF6 using the GSEA database. Through univariate and multivariate Cox regression analysis, 5 gene signals in the training cohort were found to be related to ERS and closely correlated with the prognosis in patients of HCC. A novel 5-gene signature (including HDGF, EIF2S1, SRPRB, PPP2R5B and DDX11) was created and had power as a prognostic biomarker. The prognosis of patients with high-risk HCC was worse than that of patients with low-risk HCC. Multivariate Cox regression analysis confirmed that the signature was an independent prognostic biomarker for HCC. The results were further validated in an independent external testing cohort (ICGC). Also, GSEA indicated a series of significantly enriched oncological signatures and different metabolic processes that may enable a better understanding of the potential molecular mechanism mediating the progression of HCC. The 5-gene biomarker has a high potential for clinical applications in the risk stratification and overall survival prediction of HCC patients. In addition, the abnormal expression of these genes may be affected by copy number variation, methylation variation, and post-transcriptional regulation. Together, this study indicated that the genes may have potential as prognostic biomarkers in HCC and may provide new evidence supporting targeted therapies in HCC.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types.Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2020 ◽  
Author(s):  
Ze-bing Song ◽  
Guo-pei Zhang ◽  
shaoqiang li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumor in the world which prognosis is poor. Therefore, a precise biomarker is needed to guide treatment and improve prognosis. More and more studies have shown that lncRNAs and immune response are closely related to the prognosis of hepatocellular carcinoma. The aim of this study was to establish a prognostic signature based on immune related lncRNAs for HCC.Methods: Univariate cox regression analysis was performed to identify immune related lncRNAs, which had negative correlation with overall survival (OS) of 370 HCC patients from The Cancer Genome Atlas (TCGA). A prognostic signature based on OS related lncRNAs was identified by using multivariate cox regression analysis. Gene set enrichment analysis (GSEA) and a competing endogenous RNA (ceRNA) network were performed to clarify the potential mechanism of lncRNAs included in prognostic signature. Results: A prognostic signature based on OS related lncRNAs (AC145207.5, AL365203.2, AC009779.2, ZFPM2-AS1, PCAT6, LINC00942) showed moderately in prognosis prediction, and related with pathologic stage (Stage I&II VS Stage III&IV), distant metastasis status (M0 VS M1) and tumor stage (T1-2 VS T3-4). CeRNA network constructed 15 aixs among differentially expressed immune related genes, lncRNAs included in prognostic signature and differentially expressed miRNA. GSEA indicated that these lncRNAs were involved in cancer-related pathways. Conclusion: We constructed a prognostic signature based on immune related lncRNAs which can predict prognosis and guide therapies for HCC.


Sign in / Sign up

Export Citation Format

Share Document