scholarly journals The genome of the butternut canker pathogen, Ophiognomonia clavigignenti-juglandacearum shows an elevated number of genes associated with secondary metabolism and protection from host resistance responses

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9265
Author(s):  
Guangxi Wu ◽  
Taruna A. Schuelke ◽  
Gloria Iriarte ◽  
Kirk Broders

Ophiognomonia clavigignenti-juglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.

2019 ◽  
Author(s):  
Guangxi Wu ◽  
Taruna A. Schuelke ◽  
Kirk Broders

AbstractOphiognomonia clavigignentijuglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order of Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated the phylogeny of Oc-j within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 518
Author(s):  
Siriporn Korinsak ◽  
Clive T. Darwell ◽  
Samart Wanchana ◽  
Lawan Praphaisal ◽  
Siripar Korinsak ◽  
...  

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1–6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 396 ◽  
Author(s):  
Trine B Rounge ◽  
Thomas Rohrlack ◽  
Alexander J Nederbragt ◽  
Tom Kristensen ◽  
Kjetill S Jakobsen

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 730 ◽  
Author(s):  
Sun ◽  
Wang ◽  
Ma ◽  
Li ◽  
Liu

Auxin is well known to regulate growth and development processes. Auxin early response genes serve as a critical component of auxin signaling and mediate auxin regulation of diverse physiological processes. In the present study, a genome-wide identification and comprehensive analysis of auxin early response genes were conducted in upland cotton. A total of 71 auxin response factor (ARF), 86 Auxin/Indole-3-Acetic Acid (Aux/IAA), 63 Gretchen Hagen3 (GH3), and 194 small auxin upregulated RNA (SAUR) genes were identified in upland cotton, respectively. Phylogenetic analysis revealed that the ARF, GH3, and SAUR families were likely subject to extensive evolutionary divergence between Arabidopsis and upland cotton, while the Aux/IAA family was evolutionary conserved. Expression profiles showed that the ARF, Aux/IAA, GH3, and SAUR family genes were extensively involved in embryogenic competence acquisition of upland cotton callus. The Aux/IAA family genes generally showed a higher expression level in the non-embryogenic callus (NEC) of highly embryogenic cultivar CCRI24 than that of recalcitrant cultivar CCRI12, which may be conducive to initializing the embryogenic transformation. Auxin early response genes were tightly co-expressed with most of the known somatic embryogenesis (SE) related genes, indicating that these genes may regulate upland cotton SE by interacting with auxin early response genes.


2016 ◽  
Author(s):  
Maria Tsochatzidou ◽  
Maria Malliarou ◽  
Nikolas Papanikolaou ◽  
Joaquim Roca ◽  
Christoforos Nikolaou

AbstractThe eukaryotic genome evolves under the dual constraint of maintaining co-ordinated gene transcription and performing effective DNA replication and cell division, the coupling of which brings about inevitable DNA topological tension. DNA supercoiling is resolved and, in some cases, even harnessed by the genome through the function of DNA topoisomerases, as has been shown in the concurrent transcriptional activation and suppression of genes upon transient deactivation of topoisomerase II (topoII). By analyzing a genome wide run-on experiment upon thermal inactivation of topoII in S.cerevisiae. we were able to define 116 gene clusters of consistent response (either positive or negative) to topological stress. A comprehensive analysis of these topologically co-regulated gene clusters revealed pronounced preferences regarding their functional, regulatory and structural attributes. Genes that negatively respond to topological stress, are positioned in gene-dense pericentromeric regions, are more conserved and associated to essential functions, while up-regulated gene clusters are preferentially located in the gene-sparse nuclear periphery, associated with secondary functions and under complex regulatory control. We propose that evolves with a core of essential genes occupying a compact genomic “old town”, whereas more recently acquired, condition-specific genes tend to be located in a more spacious “suburban” genomic periphery.


2016 ◽  
Author(s):  
Elizabeth O’Brien ◽  
Richard A. Kerber ◽  
Raymond L. White

AbstractThe problem of “missing heritability” in genome-wide analyses of complex diseases is thought to be attributable to some combination of: rare variants of moderate to large effect, common variants of very small effect, and epigenetic, epistatic, or shared environmental effects. Rare variants do not affect large numbers of people by definition, but identified genes and pathways frequently lead to important insights into pathogenesis, and become targets of chemoprevention or therapy. Family studies remain an efficient way to identify rare variants with sizable effects on disease risk. We present a genome-wide study of breast cancer in 22 large high-risk families including 154 women diagnosed with breast cancer. Appropriate marker spacing was achieved by simulation studies of founder haplotypes to reduce the chance that linkage disequilibrium produced spurious linkage peaks. For each family, we generated 100 simulations of null linkage genome-wide to estimate the probability that individual results were due to chance. We identified a total of 12 putative susceptibility regions with per-family genome-wide probability < 0.05. These regions were located on 10 chromosomes; 10 of the 22 families showed linkage at these locations; two or more families showed linkage to 6 regions on 5 chromosomes (4q, 5q, 6p, 14q, 18p, and 18q). These results indicate that there is considerable heterogeneity among families in genomic regions and thus variants predisposing to breast cancer. Moreover, they suggest that uncommon high– or medium-risk genetic variants remain to be found, and that family designs can be an efficient way to identify them.


2021 ◽  
Author(s):  
Nicolas Eugenie ◽  
Yvan Zivanovic ◽  
Gaelle Lelandais ◽  
Genevieve Coste ◽  
Claire Bouthier de la Tour ◽  
...  

Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. The DdrO and IrrE proteins play a major role in regulating the expression of approximately predicted twenty of these genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. Bioinformatic analyzes showed that this mechanism seems to be conserved in several species of Deinococcus, but many questions remain as such the number of genes regulated by DdrO. Here, by RNA-seq and CHiP-seq assays performed at a genome-wide scale coupled with bioinformatic analyses, we show that, the DdrO regulon in D. radiodurans includes many other genes than those previously described. These results thus pave the way to better understand the radioresistance mechanisms encoded by this bacterium.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Alanna Cera ◽  
Maria K. Holganza ◽  
Ahmad Abu Hardan ◽  
Irvin Gamarra ◽  
Reem S. Eldabagh ◽  
...  

ABSTRACT Balancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region. Many coregulated gene families utilize spatial positioning to coordinate transcription, with functionally related genes clustering together which can allow coordinated expression via adjacent gene coregulation. The mechanisms underlying this process have not been elucidated, though there are many coregulated gene families that exhibit this genomic distribution. In the present study, we tested for a role for the enhancer-promoter (EP) hypothesis, which demonstrates that regulatory elements can exert transcriptional effects over a broad distance, in coordinating transcriptional coregulation using budding yeast, Saccharomyces cerevisiae. We empirically validated the EP model, finding that the genomic distance a promoter can affect varies by locus, which can profoundly affect levels of transcription, phenotype, and the extent of transcriptional disruption throughout a genomic region. Using the nitrogen metabolism, ribosomal protein, toxin response, and heat shock gene families as our test case, we report functionally clustered genes localize to genomic loci that are more conducive to transcriptional regulation at a distance compared to the unpaired members of the same families. Furthermore, we report that the coregulation of functional clusters is dependent, in part, on chromatin maintenance and remodeling, providing one mechanism underlying adjacent gene coregulation. IMPORTANCE The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set—which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Skøtt Paulsen ◽  
Thomas Isbrandt ◽  
Markus Kirkegaard ◽  
Yannick Buijs ◽  
Mikael Lenz Strube ◽  
...  

AbstractNovel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).


2020 ◽  
Vol 8 (9) ◽  
pp. 1319 ◽  
Author(s):  
Ye-Eun Son ◽  
Hee-Soo Park

In the Aspergillus species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus Aspergillus nidulans. In the present study, vadA transcriptomic analysis revealed that VadA affects the mRNA expression of a variety of genes in A. nidulans conidia. The genes that were primarily affected in conidia were associated with trehalose biosynthesis, cell-wall integrity, stress response, and secondary metabolism. Genetic changes caused by deletion of vadA were related to phenotypes of the vadA deletion mutant conidia. The deletion of vadA resulted in increased conidial sensitivity against ultraviolet stress and induced germ tube formation in the presence and absence of glucose. In addition, most genes in the secondary metabolism gene clusters of sterigmatocystin, asperfuranone, monodictyphenone, and asperthecin were upregulated in the mutant conidia with vadA deletion. The deletion of vadA led to an increase in the amount of sterigmatocystin in the conidia, suggesting that VadA is essential for the repression of sterigmatocystin production in conidia. These results suggest that VadA coordinates conidia maturation, stress response, and secondary metabolism in A. nidulans conidia.


Sign in / Sign up

Export Citation Format

Share Document